求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

炔烃查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索
炔烃

炔烃,为分子中含有碳碳三键碳氢化合物的总称,是一种不饱和的碳氢化合物,简单的炔烃化合物有乙炔(C2H2),丙炔(C3H4)等。工业中乙炔被用来做焊接时的 原料。[1]

炔烃简介

炔烃(拼音:quētīng;英文:Alkyne)是一类有机化合物,属于不饱和烃。其官能团为碳-碳三键(-C≡C-)。通式CnH2n-2,其中n为>=2正整数。简单的炔烃化合物有乙炔(C2H2),丙炔(C3H4)等。炔烃原来也被叫做电石气,电石气通常也被用来特指炔烃中最简单的乙炔。[2]

"炔"字是新造字,音同缺(quē),左边的火取自"碳"字,表示可以燃烧;右边的夬取自"缺"字,表示氢原子数和化合价比烯烃更加缺少,意味着炔是烷(完整)和烯(稀少)的不饱和衍生物。

简单的炔烃的熔点、沸点,密度均比具有相同碳原子数的烷烃或烯烃高一些。不易溶于水,易溶于乙醚、苯、四氯化碳等有机溶剂中。炔烃可以和卤素、氢、卤化氢、水发生加成反应,也可发生聚合反应。因为乙炔在燃烧时放出大量的热,炔又常被用来做焊接时的原料。

炔烃轨道

炔烃的碳原子2S轨道同一个2P轨道杂化,形成两个相同的SP杂化轨道。堆成地分布在碳原子两侧,二者之间夹角为180度。

乙炔碳原子一个SP杂化轨道同氢原子的1S轨道形成碳氢σ键,另一个SP杂化轨道与相连的碳原子的SP杂化轨道形成碳碳σ键,组成直线结构的乙炔分子。未杂化的两个P轨道与另一个碳的两个P轨道相互平行,"肩并肩"地重叠,形成两个相互垂直的π键。

分子结构

分子中含有碳碳三键的碳氢化合物的总称,碳氢化合物。炔烃是含碳碳三键的一类脂肪烃。

物理性质

炔烃的熔沸点低、密度小、难溶于水、易溶于有机溶剂,一般也随着分子中碳原子数的增加而发生递变。炔烃在水中的溶解度比烷烃、烯烃稍大。乙炔、丙炔、1-丁炔属弱极性,微溶于水,易溶于非极性溶液中碳架相同的炔烃,三键在链端极性较低。炔烃具有偶极矩,烷基支链多的炔烃较稳定。

化学成分

第二次世界大战时期,德国化学家J.W.雷佩发明了使乙炔在加压和高温下安全进行反应的技术,合成了许多

重要产品,使乙炔成为基本的有机原料,乙炔的用途已逐渐被乙烯和丙烯代替。最简单的炔烃是乙炔,其结构简式为CH ≡CH,分子中4个原子在一直线上,C≡C和C-H的键长分别为1.205埃和1.058埃,比乙烯分子中C=C和C-H的键短。

根据量子化学的描述,乙炔分子中两个碳原子以sp杂化轨道互相重叠,再以sp杂化轨道与两个氢原子的 1s轨道重叠,共生成三个σ键(一个C-C键和两个C-H键),两个碳原子上各剩下一个2py和2pz轨道,在侧面互相垂直的方向分别重叠,生成两个π键,因此,叁键由一个σ键和两个π键组成。由于C-C呏C-C结构单元中4个碳原子在一条直线上,叁键的存在不会产生几何异构体,叁键碳原子上也不可能有侧链,因此炔烃异构体的数目比含同数碳原子的烯烃少。

特性

相对蒸气密度:(空气=1):0.91。

蒸气压(kPa):4053(16.8℃)。闪点<-50℃。

燃烧热:1298.4kJ/mol

键能:837kJ/mol

稳定性和反应活性:不稳定、非常活跃 。

禁配物:强氧化剂、强酸、卤素。

避免接触的条件:受热。

危险特性:极易燃烧爆炸。与空气混合能形成爆炸性混合物,遇明火、高热能引起燃烧爆炸。与氧化剂接触猛烈反应。与氟、氯等接触会发生剧烈的化学反应。能与铜、银、汞等的化合物生成爆炸性物质。

溶解性:微溶于乙醇,溶于丙酮、氯仿、苯。

简单炔烃的沸点、熔点以及密度,一般比碳原子数相同的烷烃和烯烃要高一些。这是由于炔烃分子较短小、细长,在液态和固态中,分子可以彼此很靠近,分子间的范德华力(van der Waals作用力)很强。炔烃分子略极性比烯烃强。烯烃不易溶于水,而易溶于石油醚、乙醚、苯和四氯化碳中。一些炔烃的名称及物理性质列入下表:

一些常见炔烃的名称及物理性质

结构鉴别

将乙炔通入银氨溶液或亚铜氨溶液中,则分别析出白色和红棕色炔化物沉淀。

其他末端炔烃也会发生上述反应,因此可通过以上反应,可以鉴别出分子中含有的-C≡CH基团。

和炔烃的氧化一样,根据高锰酸钾溶液的颜色变化可以鉴别炔烃,根据所得产物的结构可推知原炔烃的结构。

一元取代乙炔通过硼氢化-氧化可制得烯基硼烷,该加成反应式反马氏规则的,烯基硼烷在碱性过氧化氢中氧化,得烯醇,异构化后生成醛。

二元取代乙炔,通常得到两种酮的混合物。

聚合

乙炔在不同的催化剂作用下,可有选择地聚合成链形或环状化合物。例如在氯化亚铜或氯化铵的作用下,可以发生二聚或三聚作用,生成苯。但这个反应苯的产量很低,同时还产生许多其他的芳香族副产物,因而没有制备价值,但为研究苯的结构提供了有力的线索。

除了三聚环状物外,乙炔在四氢呋喃中,经氰化镍催化,于1.5~2MPa、50℃时聚合,可产生环辛四烯。

目前尚未发现环辛四烯的重大工业用途,但该化合物在认识芳香族化合物的过程中,起着很大的作用。以往认为乙炔不能在加压下进行反应,因为它受压后,很容易爆炸。后来发现将乙炔用氮气稀释,可以安全地在加压下进行反应,因而开辟了乙炔的许多新型反应,制备出许多重要的化合物。环辛四烯就是其中一个。

参考来源