电子等能面查看源代码讨论查看历史
电子等能面 |
中文名: 电子等能面 领 域: 硬件 |
电子等能面是指由空间中能量相同的各点构成的曲面。[1]
简介
晶体中电子的准经典运动主要取决于E-k关系,为了表示实际晶体的复杂的能带结构,常常使用等能面来反映E-k关系,所谓等能面是指由k空间的能量相同的各点构成的曲面。
对于极值在k=0的,有效质量各向同性的简单能带,等能面显然是球面,有效质量各向异性的能带,等能面是椭球。
能带理论
能带理论(英语:Energy band theory)是用量子力学的方法研究固体内部电子运动的理论。是于20世纪初期,在量子力学确立以后发展起来的一种近似理论。它曾经定性地阐明了晶体中电子运动的普遍特点,并进而说明了导体与绝缘体、半导体的区别所在,解释了晶体中电子的平均自由程问题。
自20世纪六十年代,电子计算机得到广泛应用以后,使用电子计算机依据第一性原理做复杂能带结构计算成为可能,能带理论由定性发展为一门定量的精确科学。
固体材料的能带结构由多条能带组成,类似于原子中的电子能级。电子先占据低能量的能带,逐步占据高能级的能带。根据电子填充的情况,能带分为传导带(简称导带,少量电子填充)和价电带(简称价带,大量电子填充)。导带和价带间的空隙称为禁带(电子无法填充),大小为能隙。
能带结构可以解释固体中导体(没有能隙)、半导体(能隙 < 3 eV)、绝缘体(能隙 > 3 eV) 三大类区别的由来。材料的导电性是由“传导带”中含有的电子数量决定。当电子从“价带”获得能量而跳跃至“传导带”时,在外电场的作用下,未填满的导带能带中的电子产生净电流,材料表现出导电性。
一般常见的金属材料,因为其传导带与价带之间的“能隙”非常小,在室温下电子很容易获得能量而跳跃至传导带而导电,而绝缘材料则因为能隙很大(通常大于3电子伏特),电子很难跳跃至传导带,所以无法导电。一般半导体材料的能隙约为1至3电子伏特,介于导体和绝缘体之间。因此只要给予适当条件的能量激发,或是改变其能隙之间距,此材料就能导电。
球面
球面(英语:sphere)是三维空间中完全圆形的几何物体,它是圆球的表面(类似于在二维空间中,“圆”包围着“圆盘”那样)。
就像在二维空间中的圆的定义一样,球面在数学上定义为三维空间中离给定的点距离相同的点的集合r。这个距离r是球的半径,球(ball)则是由离给定点距离小于r的所有点构成的几何体,而这个给定点就是球心。球的半径和球心也是球面的半径和中心。两端都在球面上的最长线段通过球心,其长度是其半径的两倍;它是球面和球体的直径。
尽管在数学之外,术语“球面”和“球”有时可互换使用,但在数学中是明确区分的:球面是一种嵌在三维欧几里得空间内的二维封闭曲面,而球是一种三维图形,其包括球面和球面内部的一切(闭球),不过更常见的定义是只包括球面内部的所有点,不包括球面上的点(开球)。这种区别并不总是保持不变,尤其是在旧的数学文献里,sphere(球面)被当作固体。这与在平面上混用术语“圆”(circle)和“圆盘”(disk)的情况类似。
热点视频
各向异性
非均向性(anisotropy),或作各向异性,与各向同性相反,指物体的全部或部分物理、化学等性质随方向的不同而有所变化的特性,例如石墨单晶的电导率在不同方向的差异可达数千倍,又如天文学上,宇宙微波背景辐射亦拥有些微的非均向性。许多的物理量都具有非均向性,如弹性模量、电导率、在酸中的溶解速度等。
各向异性可分为:
磁性各向异性
电性各向异性
光学各向异性
结构各向异性
参考来源
- ↑ 简立方晶格 S态电子等能面的计算机模拟 ,道客巴巴 ,