開啟主選單

求真百科

變更

碳纳米管

增加 2,010 位元組, 3 年前
分类 +
'''碳纳米管'''
作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能。近些年随着碳纳米管及纳米材料研究的深入其广阔的应用前景也不断地展现出来。碳纳米管,又名[[巴基管]],是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm。并且根据碳六边形沿轴向的不同取向可以将其分成锯齿形、扶手椅型和螺旋型三种。其中螺旋型的碳纳米管具有手性,而锯齿形和扶手椅型碳纳米管没有手性。2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,碳纳米管,多壁MWCNT-7在2B类致癌物清单中。 <ref>[1https://baike.baidu.com/reference/126904/28733r52DvA7NkLxVsaBXY3QGQ026ZCTuzeIczVhe_gVRCDvM9QIhThr7Sjz-dTorRkslTb9XVg0A6M5DO5C5kDuAXF96YEfMbE | 国家食品药品监督管理局,引用日期2017-12-23]] </ref> 中文名碳纳米管外文名carbon nanotubes别 名巴基管熔 点预计3652-3697℃沸 点未确定密 度在20 °C时2.1克/立方厘米外 观粉末闪 点不适用应 用复合材料,电子器件,荧光标记危险性描述该产品并没有爆炸的危险颜 色黑色气 味无味升华温度未确定相容性溶解度有蒸汽压力未确定点火温度未确定分解温度未确定.[[File:U=1371082914,3846479985&fm=26&gp=0.jpg|缩略图| [https://bkimg.cdn.bcebos.com/pic/960a304e251f95ca95e3c0acc4177f3e67095291?x-bce-process=image/resize,m_lfit,w_235,h_235,limit_ 原图链接][https://bkimg.cdn.bcebos.com/pic/960a304e251f95ca95e3c0acc4177f3e67095291?x-bce-process=image/resize,m_lfit,w_235,h_235,limit_ 图片来源百度]]]
==发现历史==
1985年,“足球”结构的C60一经发现即吸引了全世界的目光,KrotoH.W.、SmalleyR.E.、和CurlR.F.亦因共同发现C60并确认和证实其结构而获得1996年[[诺贝尔化学奖]]。在富勒烯研究推动下,1991年一种更加奇特的碳结构——碳纳米管被日本电子公司(NEC)的饭岛博士发现。碳纳米管在1991年被正式认识并命名之前,已经在一些研究中发现并制造出来,只是当时还没有认识到它是一种新的重要的碳的形态。1890年人们就发现含碳气体在热的表面上能分解形成丝状碳。1953年在CO和Fe3O4在高温反应时,也曾发现过类似碳纳米管的丝状结构。从20世纪50年代开始,石油化工厂和冷核反应堆的积炭问题,也就是碳丝堆积的问题,逐步引起重视,为了抑制其生长,开展了不少有关其生长机理的研究。这些用有机物催化热解的办法得到的碳丝中已经发现有类似碳纳米管的结构。在20世纪70年代末,新西兰科学家发现在两个[[石墨电极]]间通电产生电火花时,电极表面生成小纤维簇,进行了电子衍射测定发现其壁是由类石墨排列的碳组成,实际上已经观察到[[多壁碳纳米管]]。
[[File:A5c27d1ed21b0ef47af2de00ddc451da81cb3e51.jpg|缩略图| [https://bkimg.cdn.bcebos.com/pic/a5c27d1ed21b0ef47af2de00ddc451da81cb3e51?x-bce-process=image/resize,m_lfit,w_220,limit_ 原图链接][https://bkimg.cdn.bcebos.com/pic/a5c27d1ed21b0ef47af2de00ddc451da81cb3e51?x-bce-process=image/resize,m_lfit,w_220,limit_ 图片来源百度]]]
==结构特征==
碳纳米管中碳原子以sp2 杂化为主,同时六角型网格结构存在一定程度的弯曲,形成空间拓扑结构,其中可形成一定的sp3 杂化键,即形成的化学键同时具有sp2 和sp3 混合杂化状态,而这些p轨道彼此交叠在碳纳米管石墨烯片层外形成高度离域化的大π键,碳纳米管外表面的大π键是碳纳米管与一些具有共轭性能的大分子以[[非共价键]]复合的化学基础。对多壁碳纳米管的光电子能谱研究结果表明,不论单壁碳纳米管还是多壁碳纳米管,其表面都结合有一定的官能基团,而且不同制备方法获得的碳纳米管由于制备方法各异,后处理过程不同而具有不同的表面结构。一般来讲,单壁碳纳米管具有较高的化学惰性,其表面要纯净一些,而多壁碳纳米管表面要活泼得多,结合有大量的表面[[基团]],如[[羧基]]等。以变角X光电子能谱对碳纳米管的表面检测结果表明,单壁碳纳米管表面具有化学惰性,化学结构比较简单,而且随着碳纳米管管壁层数的增加,缺陷和化学反应性增强,表面化学结构趋向复杂化。内层碳原子的化学结构比较单一,外层碳原子的化学组成比较复杂,而且外层碳原子上往往沉积有大量的无定形碳。由于具有物理结构和化学结构的不均匀性,碳纳米管中大量的表面碳原子具有不同的表面微环境,因此也具有能量的不均一性。 碳纳米管不总是笔直的,而是局部区域出现凸凹现象,这是由于在六边形编制过程中出现了五边形和七边形。如果五边形正好出现在碳纳米管的顶端,即形成碳纳米管的封口。当出现七边形时纳米管则凹进。这些拓扑缺陷可改变碳纳米管的螺旋结构,在出现缺陷附近的电子能带结构也会发生改变。另外,两根毗邻的碳纳米管也不是直接粘在一起的,而是保持一定的距离。
==分类==
碳纳米管可以看做是石墨烯片层卷曲而成,因此按照石墨烯片的层数可分为:单壁碳纳米管(或称单层碳纳米管,Single-walled Carbon nanotubes, SWCNTs)和多壁碳纳米管(或[[多层碳纳米管]],Multi-walledCarbonnanotubes,MWCNTs),多壁管在开始形成的时候,层与层之间很容易成为陷阱中心而捕获各种缺陷,因而多壁管的管壁上通常布满小洞样的缺陷。与多壁管相比,单壁管直径大小的分布范围小,缺陷少,具有更高的均匀一致性。单壁管典型直径在0.6-2nm,多壁管最内层可达0.4nm,最粗可达数百纳米,但典型管径为2-100nm。碳纳米管依其结构特征可以分为三种类型:[[扶手椅形纳米管]](armchairform),[[锯齿形纳米管]](zigzag form)和[[手性纳米管]](chiralform)。碳纳米管的手性指数(n,m)与其螺旋度和电学性能等有直接关系,习惯上n>=m。当n=m时,碳纳米管称为扶手椅形纳米管,手性角(螺旋角)为30o;当n>m=0时,碳纳米管称为锯齿形纳米管,手性角(螺旋角)为0o;当n>m≠0时,将其称为[[手性碳纳米管]]。 根据碳纳米管的导电性质可以将其分为金属型碳纳米管和半导体型碳纳米管:当n-m=3k(k为整数)时,碳纳米管为金属型;当n-m=3k±1,碳纳米管为[[半导体型]]。 按照是否含有管壁缺陷可以分为:完善碳纳米管和含缺陷碳纳米管。按照外形的均匀性和整体形态,可分为:直管型,碳纳米管束,Y型,蛇型等。 关于管壁缺陷对碳纳米管力学性质的影响规律也值得引起关注,这也将有助于进一步认识碳纳米管及其复合材料。由于碳纳米管制造工艺的限制,碳纳米管中含有大量的各种缺陷,如原子空位缺陷(单原子或多原子空位) 和Stone-Thrower和StoneThrower-Wales (STW)型缺陷等。见下图。
==性质==
对人的不利影响
眼睛接触:可能引起眼睛不适 。
皮肤接触:2012年并不完全了解纳米粒子从皮肤渗透是否会对人体会造成不良影响。然而,局部应用原料单壁碳纳米管到裸鼠体内已经证明造成皮肤过敏。在使用体外培养的人皮肤细胞进行实验时显示,这两个单壁碳纳米管和多壁碳纳米管可以进入细胞,造成亲释放,炎性细胞因子,氧化应激,降低细胞生存能力。 空气吸入:可能导致肺癌的形成,尘肺,肉芽肿或间皮瘤。食入:会刺激肠道,相关实验不足。
==对水生生物的不利影响==
2012年8月24日,美国密苏里大学和美国地质勘探局共同完成的研究显示,碳纳米管对某些水生生物是有毒的。碳纳米管并不纯是碳,用于其生产过程中的镍、铬和其他金属会残留下来成为杂质。这些残留的金属和碳纳米管能减缓某些种类水生生物的生长率甚至导致死亡。密苏里大学邓宝林教授表示,在碳纳米管未来发展前景问题上,必须慎重和有准备地进行权衡。人们还没有充分了解其对环境和人类健康的影响,应防止它作为大规模生产材料进入环境中。 <ref>[2https://baike.baidu.com/reference/126904/28bdmdgdfM46Z0BU-7xIzYjKDq-H25r99whl4OHSXcEvYxYbh9pB_M6WLC-6stutGYSD4YKjoKMeftaXLv1UF-16Quh-stKTMw | 搜狐,引用日期2013-09-28] ] </ref>
==应用前景==
碳纳米管可以制成透明导电的薄膜,用以代替ITO[[(氧化铟锡)]]作为触摸屏的材料。先前的技术中,科学家利用粉状的碳纳米管配成溶液,直接涂布在PET或玻璃衬底上,但是这样的技术至今没有进入量产阶段;目前可成功量产的是利用超顺排碳纳米管技术;该技术是从一超顺排碳纳米管阵列中直接抽出薄膜,铺在衬底上做成透明导电膜,就像从棉条中抽出纱线一样。该技术的核心-超顺排碳纳米管阵列是由北京清华-富士康纳米中心于2002年率先发现的新材料。 <ref>[3https://baike.baidu.com/reference/126904/89d62c_f6qEop9bYqyU4hvwvMCbDMoU0woPJrYUzLe37YBkQwoc2e22eX0YsHA4Td_U3EqFDgwqWeAQX7yel0boUdMnflkBCZNqT_TSM_TMmuWyZESEFCN9CndrZ2LZe | OFweek显示网.2014-07-15[引用日期2014-08-12]] </ref> 碳纳米管触摸屏首次于2007~2008年间成功被开发出,并由天津富纳源创公司于2011年产业化,至今已有多款智慧型手机上使用碳纳米管材料制成的触摸屏。与现有的氧化铟锡(ITO)触摸屏不同之处在于:氧化铟锡含有稀有金属“铟”,碳纳米管触摸屏的原料是甲烷、乙烯、乙炔等碳氢气体,不受稀有矿产资源的限制;其次,铺膜方法做出的碳纳米管膜具有导电异向性,就像天然内置的图形,不需要光刻、蚀刻和水洗的制程,节省大量水电的使用,较为环保节能。工程师更开发出利用碳纳米管导电异向性的定位技术,仅用一层碳纳米管薄膜即可判断触摸点的X、Y座标;碳纳米管触摸屏还具有柔性、抗干扰、防水、耐敲击与刮擦等特性,可以制做出曲面的触摸屏,具有高度的潜力可应用于穿戴式装置、智慧家俱等产品。 <ref>[https://baike.baidu.com/reference/126904/d8875XiVEJqTHd5VKxyKbvRIoyZCNKjdY8csl2_c347OQM2mTm9dZvtHsbyxrN9EaLnpfAI2rYC56T5UpGnclStgkX7czHopdarZcfp9G-XvY1UOU1cO8BXKVhN_A7fbq9QnkjG1iTkzKupZLz9WitktnEMcyeW5lMZEofI | DIGITIMES.2014-07-17[4引用日期2014-08-12]] </ref> 据物理学家组织网、英国广播公司2013年9月26日报道,美国斯坦福大学的工程师在新一代电子设备领域取得突破性进展,首次采用碳纳米管建造出计算机原型,比基于硅芯片模式的计算机更小、更快且更节能。瑞士洛桑联邦理工学院电气工程学院主任乔瓦尼·德·米凯利教授强调了这一世界性成就的两个关键技术贡献:首先,将基于碳纳米管电路的制造过程落实到位。其次,建立了一个简单而有效的电路,表明使用碳纳米管计算是可行的。下一代芯片设计研究联盟、伊利诺伊大学厄巴纳-香槟分校纳雷什教授评价道,虽然碳纳米管计算机可能还需要数年时间才趋于成熟,但这一突破已经凸显未来碳纳米管半导体以产业规模生产的可能性。 <ref>[https://baike.baidu.com/reference/126904/975azz7y5MmdGn0_7DrrwKkbNLAO2H1xQyBSlgn7pe0LZ7PaJ0EogeOpczscTTJ4r9xw1CrjKrEsljpDtoBh5hHTbQIcAhr5CjkcbZp4CykW1Om1n-22_fseqyb9ggwW3-PwXHk | 凤凰[5引用日期2013-09-28]] </ref>
氢气被很多人视为未来的清洁能源。但是氢气本身密度低,压缩成液体储存又十分不方便。碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。适当加热,氢气就可以慢慢释放出来。研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。
在碳纳米管的内部可以填充金属、氧化物等物质,这样碳纳米管可以作为模具,首先用金属等物质灌满碳纳米管,再把碳层腐蚀掉,就可以制备出最细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。有些碳纳米管本身还可以作为纳米尺度的导线。这样利用碳纳米管或者相关技术制备的微型导线可以置于硅芯片上,用来生产更加复杂的电路。利用碳纳米管的性质可以制作出很多性能优异的复合材料。例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。碳纳米管增强陶瓷复合材料强度高,抗冲击性能好。碳纳米管上由于存在五元环的缺陷,增强了反应活性,在高温和其他物质存在的条件下,碳纳米管容易在端面处打开,形成一个管子,极易被金属浸润、和金属形成金属基复合材料。这样的材料强度高、模量高、耐高温、热膨胀系数小、抵抗热变性能强。碳纳米管还给物理学家提供了研究毛细现象机理最细的毛细管,给化学家提供了进行纳米化学反应最细的试管。碳纳米管上极小的微粒可以引起碳纳米管在电流中的摆动频率发生变化,利用这一点,1999年,巴西和美国科学家发明了精度在10-17kg精度的“纳米秤”,能够称量单个病毒的质量。随后德国科学家研制出能称量单个原子的[[“纳米秤”]]。
(1)超声波分散设备:非常适合实验室规模、低粘度介质分散碳纳米管,用于中、高粘度介质时会受到限制。
(2)研磨分散设备:适合大规模地分散碳纳米管、中粘度介质分散碳纳米管。
(3)采用“先研磨分散、后超声波分散”组合方法,可以高效、稳定地分散碳纳米管.
==分散剂用量推荐==
==超声波分散设备使用建议==
1、超声波粉碎机(tip型)和超声波清洗机(bath型)都可以用于碳纳米管分散.2、超声波粉碎机发出的超声波能量密度高(能量集中于变幅杆上而不是一个平面上)、频率低,更适合碳纳米管的分散。根据碳纳米管分散液的量,选择合适的超声波粉碎机功率和变幅杆直径.
3、在水介质中,超声波的空化作用会使TNWDIS产生少量泡沫,泡沫会影响超声效果,可以选择静置或加入消泡剂,消除泡沫,粘度高的介质不适合选择超声波设备分散,建议选择研磨分散设备.
==发展史==
在1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Lijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbonnanotube”,即碳纳米管,又名[[巴基管]]。1993年,S.Lijima等和D.S.Bethune等同时报道了采用电弧法,在石墨电极中添加一定的催化剂,可以得到仅仅具有一层管壁的碳纳米管,即单壁碳纳米管产物。1997年,A.C.Dillon等报道了单壁碳纳米管的中空管可储存和稳定氢分子,引起广泛的关注。相关的实验研究和理论计算也相继展开。据推测,单壁碳纳米管的储氢量可达10%(质量比)。此外,碳纳米管还可以用来储存甲烷等其他气体。
碳纳米管是无法用于储氢的,主要问题有两个:一是假如作为容器进行储氢,则无法对其进行可控的封闭和开启;二是假如用于氢气吸附,则其吸附率不超过1%(质量分数)。1999年《SCIENCE》上有篇牛论"High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures"说可以用Li-doped CNT吸附高达20%的氢气,第二年就被RalphYang给驳斥"Hydrogenstoragebyalkali-dopedcarbonnanotubes-revised"说吸附的根本都是水。另一篇1997年《NATURE》上的牛论"Storageofhydrogeninsingle-walledcarbonnanotubes"更被大家批驳得体无完肤。在进行了十几年的研究后,最终NSF、DOE和GM得出结论说用碳纳米管来储氢就是痴人说梦。它就不是用来干这个的,拜托大家还是饶了它吧。能否控制单壁碳纳米管的生长?近二十余年来一直困扰着碳纳米管研究领域的科学家们,能否找到控制方法也成为碳纳米管应用的瓶颈。日前,这道世界性难题被北京大学李彦教授研究团队攻克,该团队在全球首次提出单壁碳纳米管生长规律的控制方法,研究成果已于2014年6月26日发表在国际权威学术期刊《自然》杂志上 .<ref>[6https://baike.baidu.com/reference/126904/f562NQryV-y6MIDRavf5NXcgc1mN7A4rjpP47bg980gsBRuW9yPF7zMuZt_NB6ovdLkft440LGFRIVg9_6Iv6Jp4xqN8SMxTII2etN3dqeVgXoGb5XyZPug | 新华网[引用日期2014-07-09]] </ref>
==潜在的环境风险==
8,908
次編輯