西莫恩·德尼·泊松查看源代码讨论查看历史
西莫恩·德尼·泊松 |
西莫恩·德尼·泊松(Simeon-Denis Poisson 1781~1840)法国数学家、几何学家和物理学家。1781年6月21日生于法国卢瓦雷省的皮蒂维耶,1840年4月25日卒于法国索镇。1798年入巴黎综合工科学校深造。受到拉普拉斯、拉格朗日的赏识。1800年毕业后留校任教,1802年任副教授,1806年任教授。1808年任法国经度局天文学家。1809年巴黎理学院成立,任该校数学教授。1812年当选为巴黎科学院院士。泊松的科学生涯开始于研究微分方程及其在摆的运动和声学理论中的应用。他工作的特色是应用数学方法研究各类物理问题,并由此得到数学上的发现。他对积分理论、行星运动理论、热物理、弹性理论、电磁理论、位势理论和概率论都有重要贡献。他还是19世纪概率统计领域里的卓越人物。他改进了概率论的运用方法,特别是用于统计方面的方法,建立了描述随机现象的一种概率分布──泊松分布。他推广了"大数定律",并导出了在概率论与数理方程中有重要应用的泊松积分。
简介
泊松的科学生涯开始于研究微分方程及其在摆的运动和声学理论中的应用。他工作的特色是应用数学方法研究各类力学和物理问题,并由此得到数学上的发现。他对积分理论、行星运动理论、热物理、弹性理论、电磁理论、位势理论和概率论都有重要贡献。
"泊松是第一个沿着复平面上的路径实行积分的人."──克兰
"我建立了描述随机现象的一种概率分布."──泊松
评价
在数学方面:美国数学史家克兰(Kline)指出:"泊松是第一个沿着复平面上的路径实行积分的人."在他1817年的出版物中对序列收敛的条件就有了正确的概念,现在一般把这个条件归功于柯西.泊松对发散级数作了深入的探讨,并奠定了"发散级数求积"的理论基础,引进了一种今天看来就是可和性的概念.把任意函数表为三角级数和球函数时,他广泛地使用了发散级数,用发散级数解出过微分方程,并导出了用发散级数作计算怎样会导致错误的例子.他还把许多含有参数的积分化为含参数的幂级数.他关于定积分的一系列论文以及在傅里叶级方面取得的成果,为后来的狄利克雷和黎曼的研究铺平了道路.
泊松也是19世纪概率统计领域里的卓越人物.他改进了概率论的运用方法,特别是用于统计方面的方法,建立了描述随机现象的一种概率分布──泊松分布.他推广了"大数定律",并导出了在概率论与数理方程中有重要应用的泊松积分.他是从法庭审判问题出发研究概率论的,1837年出版了他的专著《关于刑事案件和民事案件审判概率的研究》.
泊松就三个变数的二次型建立起特征值理论;并给出新颖的消元法;研究过曲面的曲率问题和积分方程.
泊松一生对摆的研究极感兴趣,他的科学生涯就是从研究微分方程及其在摆的运动和声学理论中的应用开始的.直到晚年,他仍用大部分时间和精力从事摆的研究.他为什么对摆如此着迷?有一个传说,泊松小时候由于身体孱弱,他的母亲曾把他托给一个保姆照料,保姆一离开他时,就把泊松放在一个摇篮式的布袋里,并将布袋挂在棚顶的钉子上,吊着他摆来摆去.这个保姆认为,这样不但可以使孩子身上不被弄脏,而且还有益于孩子的健康.泊松后来风趣地说:吊着我摆来摆去不但是我孩提时的体育锻炼,并且使我在孩提时就熟悉了摆.
在数学中以他的姓名命名的有:泊松定理、泊松公式、泊松方程、泊松分布、泊松过程、泊松积分、泊松级数、泊松变换、泊松代数、泊松比、泊松流、泊松核、泊松括号、泊松稳定性、泊松积分表示、泊松求和法……
泊松的主要著作还有《毛细管作用新理论》和《热学的数学理论》等。[1]