求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

遗传密码查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索
  遗传密码

遗传密码是一组规则,将DNA或RNA序列以三个核苷酸为一组的密码子转译为蛋白质的氨基酸序列,以用于蛋白质合成。它决定肽链上每一个氨基酸和各氨基酸的合成顺序,以及蛋白质合成的起始、延伸和终止。遗传密码又称密码子、遗传密码子、三联体密码,匿藏了生命及其历史演化的秘密。

简介

遗传密码是活细胞用于将DNA或mRNA序列中编码的遗传物质信息翻译为蛋白质的一整套规则。mRNA的翻译是通过核糖体完成的,核糖体利用转运RNA(tRNA)分子一次读取mRNA的三个核苷酸,并将其编码的氨基酸按照信使RNA(mRNA)指定的顺序连接完成蛋白质多肽链的合成。由于脱氧核糖核酸(DNA)双链中一般只有一条单链(称为模版链)被转录为信使核糖核酸(mRNA),而另一条单链(称为编码链)则不被转录,所以即使对于以双链 DNA作为遗传物质的生物来讲,密码也用核糖核酸(RNA)中的核苷酸顺序而不用DNA中的脱氧核苷酸顺序表示。遗传密码决定蛋白质中氨基酸顺序的核苷酸顺序 ,由3个连续的核苷酸组成的密码子所构成 。遗传密码在所有生物体中高度相似,乎所有的生物都使用同样的遗传密码,可以在一个包含64个条目的密码子表中表达。即使是非细胞结构的病毒,它们也是使用标准遗传密码。但是也有少数生物使用一些稍微不同的遗传密码。虽然“遗传密码”决定了蛋白质的氨基酸序列,但DNA的其他基因组区域决定了根据各种“基因调控密码”生产这些蛋白质的时间和地点。遗传密码由两套相对独立的系统——RNA和DNA构成,是为了实现对细胞内成百上千同时发生的生化反应进行有序的信息管控,因为在生命构建与运行过程之中,mRNA的使命完成之后,马上就被销毁掉,而DNA所记录的遗传信息则是要永久保存的,是种族延续的根本。遗传密码是与原始生命的生化系统协同演化而来的,遗传密码的诞生是生命诞生的重要标准。

评价

遗传密码的发现是20世纪50年代的一项奇妙想象和严密论证的伟大结晶。mRNA由四种含有不同碱基腺嘌呤(简称A)、尿嘧啶(简称U)、胞嘧啶(简称C)、鸟嘌呤(简称G)的核苷酸组成。最初科学家猜想,一个碱基决定一种氨基酸,那就只能决定四种氨基酸,显然不够决定生物体内的二十种氨基酸。那么二个碱基结合在一起,决定一个氨基酸,就可决定十六种氨基酸,显然还是不够。如果三个碱基组合在一起决定一个氨基酸,则有六十四种组合方式(4 *4*4=64)。前苏联科学家乔治伽莫夫(George Gamow)最早指出需要以三个核酸一组才能为20个氨基酸编码。克里克的实验首次证明密码子由三个DNA碱基组成。1961年,美国国家卫生院的海因里希 马太(Heinrich Matthaei)与马歇尔 沃伦尼伦伯格(Marshall Warren Nirenberg)在无细胞系统(Cell-free system)环境下,把一条只由尿嘧啶(U)组成的RNA转释成一条只有苯丙氨酸(Phe)的多肽,由此破解了首个密码子(UUU -> Phe)。随后科拉纳(Har Gobind Khorana)破解了其它密码子,接着霍利(Robett W.Holley)发现了负责转录过程的tRNA。1968年,科拉纳、霍利和尼伦伯格分享了诺贝尔生理学或医学奖。[1]

参考文献