郑平查看源代码讨论查看历史
郑平 | |
---|---|
郑平 | |
出生 | 1936年 |
国籍 | 中国 |
籍贯 | 广州 |
民族 | 汉 |
母校 | 俄克拉荷马州立大学 |
职业 | 工程热物理学专家 |
研究领域 |
多孔介质传热、辐射传热和微尺度传热研究 |
郑平[1]
工程热物理学专家。上海交通大学教授。1936年生于广州。1958年毕业于俄克拉荷马州立大学,分别于1960年和1965年获美国麻省理工学院硕士学位和斯坦福大学工程博士学位。2011年当选为中国科学院院士。长期从事多孔介质传热、辐射传热和微尺度传热研究。
教育背景[2]
- 1961年1月~1965年6月,美国斯坦福大学航空航天工程系 航空航天博士
- 1959年9月~1960年12月,美国麻省理工学院(MIT)机械工程系 工程热物理硕士
- 1956年1月~1958年6月,美国俄克拉荷马州立大学机械工程系学士
工作经历
- 1970年1月,进入夏威夷大学机械工程系担任副教授,1989年开始担任系主任。
- 1976年7月~1977年6月,在美国斯坦福大学石油工程系做访问教授。
- 1984年3月~1984年9月,在德国慕尼黑大学热工研究所做访问教授。
- 1995年,应聘为香港科技大学机械工程系教授,并担任热能系统实验室主任。
- 1999年6月~1999年8月,在法国巴黎第六大学做访问教授。
- 2002年6月~2002年8月,在新加波南洋理工大学机械与制造工程系做访问教授。
- 2003年,应上海交通大学机械与动力工程学院的邀请,开始在上海交通大学担任全职教授,在国家985/211工程资助下,创建了微流与热控研究中心,担任中心主任并组建研究团队。
- 2005年,担任上海交通大学工程热物理研究所学科带头人、所长。
- 2011年,当选为中国科学院院士 。
- 2014年9月~2014年10月,在香港科技大学做访问教授。
- 2014年7月12日,与浙江万享科技有限公司共建院士专家工作站。
研究方向
长期从事多孔介质传热、辐射传热和微尺度传热研究。提出了多孔介质热对流、弥散导热、两相流等系列理论模型,应用于地热能源的预测、电子元件的冷却和燃料电池性能的评估。建立了“微分近似法”的多维辐射换热简化模型,应用于航天热控的设计。阐明了尺度效应和接触角等界面效应对微尺度相变传热机理的影响,并将微通道的独特流型与传热规律应用于芯片冷却和微换热器的设计。
- 微尺度传热及其在电子芯片冷却技术的应用
- 沸腾传热及其在超高热流密度冷却技术的应用
- 多孔介质传热及其在燃料电池与地热的应用
主要奖项
- 1986年,美国机械工程师学会会士,
- 1996年,获得美国机械工程师学会(ASME)颁发的传热学纪念奖(Heat Transfer Memorial Award)
- 2000年,香港工程科学院院士,
- 2003年,获得美国航空航天学会(AIAA)颁发的热物理学奖(Thermophysics Award)
- 2004年,美国航空航天学会会士
- 2006年,获得美国机械工程师学会(ASME)颁发的传热学经典论文奖(Heat Transfer Classic Paper Award),
- 2006年,获得美国机械工程师学会(ASME)和美国化学工程学会(AIChE)共同颁发的马可杰克纪念奖( Max Jakob Memoiral Award)
- 2006年,上海市科技一等奖(排名第一)
- 2007年,国家自然科学二等奖(排名第一)
- 2009年,上海交通大学校长奖
- 2010年,获得日本机械工程学会(JSME)颁发的热能工程国际奖
- 2011年,中国科学院院士,
- 2011年,上海交通大学杰出校友奖,
- 2014年,汤森路透全球“高引用科学家”
论文专著
Journal & SCI Papers (2003-2018)
1. Chen, Y. P. and Cheng, P.,” Fractal Characterization of Wall Roughness on Pressure drop in Microchannels,” Int. Comm. Heat Mass Transfer, Vol 30, pp.1-11 (2003).
2. Wu, H. Y. and Cheng, P., “Liquid/Two-Phase/Vapor Alernating Flow During Boiling in Microchannels at High Heat Flux”, Int. Comm. Heat Mass Transfer, v.30, pp.295-302 (2003).
3. Wu, H. Y., and Cheng, P., “An Experimental Study of Convective Heat Transfer in Silicon Microchannels with Different Surface Conditions,” Int. J. Heat Mass Transfer, v. 46, pp.2547-2556 (2003).
4. Wu, H. Y. and Cheng, P., “Visualization and Measurements of Periodic Boiling in Silicon Microchannels,” Int. J. Heat Mass Transfer, v. 46, pp 2603-2614 (2003).
5. Wu, H. Y. and Cheng, P., “Friction Factors in Smooth Trapezoidal Silicon Microchannels with Different Aspect Ratios,” Int. J. Heat Mass Transfer, v.46, pp.2519-2525 (2003).
6. Ma, Z. Q., Cheng, P., and Zhao, T. S., “A Palladium-Alloy Deposited Nafion Membrene for Direct Methanol Fuel Cells,” J. of Membrane Science, v. 215, pp.327-336 (2003).
7. Yu, J. R., Cheng, P., Ma, Z.Q., and Yi, B. L., “Fabrication of a Miniature Twin-Fuel-Cell on Silicon Wafer,” Electrochimica Acta, v.48, pp.1537-1541 (2003).
8. Yu, J. R., Cheng, P., Ma, Z.Q., and Yi, B. L., “Fabrication of Miniature Silicon Wafer Fuel Cells with Improved Performance,” J. of Power Sources, v.124, pp.40-46 (2003).
9. Lu, G. Q., and Cheng, P., "Numerical and Experimental Study of a Gifford-Mcmahon-Type Pulse Tube Refrigerator," J. of Thermophysics and Heat Transfer, v. 17, pp.457-463 (2003).
10. Deng, P. G., Lee, K. Y., and Cheng, P., “The Growth and Collapse of a Micro-Bubble Under Pulse Heating,” Int. J. Heat Mass Transfer, v.46, pp.4041-4050 (2003).
11. Nakayama, G., and Cheng, P., “Effects of Interface Wettability on Microscale Flow by Molecular Dynamic Simulation,” Int. J. Heat Mass Transfer, v.47, pp.501-513 (2004).
12. Li J., and Cheng, P., “Bubble Cavitation in Microchannel,” Int. J. Heat Mass Transfer, v.47, pp.2689-2698 (2004).
13. Wu, H. Y. and Cheng, P., “Boiling Instability in Parallel Silicon Microchannels at different Heat Flux”, Int. J. of Heat & Mass Transfer, v.47, pp.3631-3641 (2004).
14. Zhou D. W., Liu, D. Y. and Cheng, P., “Boiling Heat Transfer Characteristics from a Horizontal Tube Embedded in a Porous Medium with Acoustic Excitation,” Journal of Enhanced Heat Transfer, v.11, pp.231-248 (2004).
15. Li, J., Peterson, G. P., and Cheng, P., “Three-dimensional Analysis of Heat Transfer in a Micro- Heat Sink with Single Phase Flow,” Int. J. Heat Mass Transfer, v.47, pp.4215-4231 (2004).
16. Yang, H., Zhao, T. M and Cheng, P., “Gas-Liquid Two-Phase Flow Patterns in a Miniature Square Channel with a Gas Permeable Sidewall”, Int. J. Heat Mass Transfer, v. 47, pp.5725-5739 (2004).
17. Deng, P. G., Lee, Y. K. and Cheng, P., “Micro Bubble Dynamics in DNA Solutions”, J. Micromechanics and Microengineering, v.14, pp.693-701 (2004).
18. Deng, P. G., Lee, Y. K., and Cheng, P., “Measurements of Micro Bubble Nucleation Temperatures in DNA Solutions,” J. Micromech. Microeng., v.15, pp.564-574 (2005).
19. Li, J., Cheng, P., Peterson, G. P., and Xu, J. Z. “Rapid Transient Heat Conduction in Multilayer Materials with Pulsed Heating Boundary,” Numerical Heat Transfer, v.47, pp.1-20 (2005).
20. Lu, G. Q. and Cheng, P., “Thermoacoustic Streaming in a Tube with Isothermal Outer Surface,” Int. J. Heat Mass Transfer, v.48, pp.1599-1607 (2005).
21. Chen, Y. P., and Cheng, P., “Condensation of Steam in Silicon Microchannels,” Int. Comm. of Heat Mass Transfer v.32, pp.175-183 (2005).
22. Wu, H. Y., and Cheng, P., “Condensation Flow Patterns in Silicon Microchannels,” Int. J Heat Mass Transfer, v.48, pp.2186-2197(2005).
23. Chen, Y. P., and Cheng, P., “An Experimental Investigation on the Thermal Efficiency of Fractal Tree-Like Microchannel Nets,” Int. Comm. Heat Mass Transfer, v.32, pp.931-938 (2005).
24. Li, J., Peterson, G. P., and Cheng, P., “Mechanical Nonequilibrium Considerations in Homogeneous Bubble Nucleation for Unsteady-State Boiling,” Int. J. Heat Mass Transfer, v.48, pp3081-3096 (2005).
25. Liu, T. H., Zhou, T.H. and Cheng, P., “Transport Phenomena Analysis in Proton Exchange Membrane Fuel Cells,” J. Heat Transfer. v.127, pp.1363-1379 (2005).
26. Mosdorf, R., Cheng, P., and Wu, H. Y., and Shoji, M., "Non-linear Analyses of Flow Boiling in Microchannels", Int. J. of Heat & Mass Transfer, v48, pp.4667-4683(2005).
27. Deng, P. G., Lee, Y. K. and Cheng, P. "Two-dimensional Micro-Bubble Actuator Array to Enhance the Efficiency of Molecular Beacon Based DNA Micro-Biosensor," Biosensors and Bioelectronics, Vol. 21, No. 8, pp.1443-1450 (2006).
28. Deng, P. G., Lee, Y. K. and Cheng, P. “An Experimental Study of Heater Size Effect on Micro Bubble Generation,” Int. J. Heat Mass Transfer, v.49, pp.2535-2544 (2006).
29. Cheng, P. and Wu, H. Y. “Mesoscale and Microscale Phase-Change Heat Transfer,” Advances in Heat Transfer, v.39, pp.461-573 (2006).
30. Xu, Z. H., Song,Y.T. and Cheng, P., “An Analysis of Compressible Flows in a Packed Bed with Gas-Solid Reactions”, Int. Comm. Heat & Mass Transfer v.33, pp.278-286 (2006).
31. Nagayama, G., Tsuruta, T., and Cheng, P., “Molecular Dynamics Simulation on Bubble Formation in a Nanochannel,” Int. J. Heat Mass Transfer v.49, pp.4437-4443 (2006).
32. Wu, H.Y., Cheng, P., and Wang, H., ““Pressure Drop and Flow Boiling Instabilities in Silicon Microchannel Heat Sinks” J. of Micromech. & Microeng. v.16, pp.2138-2146 (2006).
33. Wang, W., Hong, F.J., Qiu H.H. and Cheng, P. “The Impact of Thermal Contact Conductance on the Spreading and Solidification of a Droplet on a Substrate,” Heat Transfer Engineering, v.27, pp.68-80(2006).
34. Cheng, P., Wu, H. Y., and Hong, F. J., “Phase-Change Heat Transfer in Microsystems,” J. of Heat Transfer v.129, pp.101-108(2007).
35. Chao, C. Y.H., Hui, K. S., Kong, W., Cheng, P., and Wang, J. H., “Analytical and Experimental Study of Premixed Methane-Air Flame Propagation in Narrow Channels,” Int. J. Heat Mass Transfer v.50, pp.1302-1313(2007).
36. Wu, H. Y., Yu, M. M., Cheng, P., and Wu, X.Y. “Ínjection Flow during Steam Condensation in Silicon Microchannels,” J. of Micromech. & Microeng. v.17, pp1618-1627 (2007).
37. Wang, G. D., Cheng, P., and Wu, H. Y., “Unstable and Stable Flow Boiling in Parallel Microchannels and in a Single Microchannel,” Int. J. Heat Mass Transfer v.50, pp.4297-4310 (2007).
38. Cao J., Hong F.J. and Cheng P., “Numerical Study of Radial Temperature Gradient Effect on Separation Efficiency in Capillary Electrophoresis”, International Communications in Heat and Mass Transfer v.34, pp.1048-1055 (2007).
39. Hong F.J., Cheng P., Ge H. and Goh Teck Joo, “Conjugate Heat Transfer in Fractal-shaped Microchannel Network Heat Sink for Integrated Microelectronic Cooling Application,” Int. Journal of Mass and Heat Transfer v.50, pp.4986-4998(2007).
40. Quan, X. J., Cheng, P. and Wu, H.Y., “Transition from Annular Flow to Plug/Slug Flow in Condensation of Steam in Microchannel,” Int. J. Heat Mass Transfer v.51, pp.707-716 (2008).
41. Chen, Y. P., Shi, M. H. Cheng, P., Peterson, G. P., “Condensation in Microchannels”, Nanoscale and Microscale Thermophysical Engineering, v.12, pp.117-143(2008).
42. Cao J., Cheng P. and Hong F.J., “A Numerical Study of an Electrothermal Vortex Enhanced Micromixer,” Microfluid Nanofluid v.5, pp.13-21 (2008).
43. Wang, G.D., Cheng P, Bergles, A E. “Effects of Inlet/outlet Configurations on Flow Boiling Instability in Parallel Microchannels,” Int. J. Heat Mass Transfer, v.51, pp.2267-2281(2008).
44. Wang, G. D., and Cheng, P. “An Experimental Study of Flow Boiling Instability in a Single Microchannel”, Int. Comm. Heat Mass Transfer v.35, pp.1229-1234(2008).
45. Quan, X. J., Cheng, P., and Wu, H. Y., “An Experimental Investigation on Pressure Drop of Steam Condensing in Silicon Microchannels,” Int. J. Heat Mass Transfer v.51, pp.5454-5458 (2008).
46. Cao J., Cheng P., Hong F. J., “A Numerical Analysis of Forces Imposed on Particles in Conventional Dielectrophoresis in Microchannels with Interdigitated Electrodes,” Journal of Electrostatics v.66, pp.620-626(2008).
47. Qu J., Wu H.Y, Cheng P., “Effects of Functional Surface on Performance of a Micro Heat Pipe,” International Communication in Heat and Mass Transfer v.35, pp.523-528 (2008).
48. Wang, G. D., and Cheng, P., “Subcooled Flow Boiling and Microbubble Emission Boiling Phenomena in a Partially Heated Microchannel,” Int. J. Heat Mass Transfer 52 (2009) 79-91.
49. Wang G. D., Hao L., Cheng P., “An Experimental and Numerical Study of Forced Convection in a Microchannel with Negligible Axial Heat Conduction,” Int. J. Heat Mass Transfer 52(2009)1070-1074.
50. Hao, L and Cheng, P, “Lattice Boltzmann Simulations of Anisotropic Permeabilities in Carbon Paper Gas Diffusion Layers“,J. of Power Sources 186 (2009) 104-114.
51. Chen, G. and Cheng, P., “Nucleate and Film Boiling on a Microheater under Pulse Heating in a Microchannel”, Int. Comm. Heat & Mass Transfer 36 (2009) 391-396.
52. Hao, L and Cheng, P, “Lattice Boltzmann Simulations of Liquid Droplet Dynamic Behavior on a Hydrophobic Surface of a Gas Flow Channel,” J. of Power Sources 190 (2009) 435-446.
53. Cheng, P., Wang, G. D., and Quan, X. J., “Recent Work on Boiling and Condensation in Microchannels,” J. of Heat Transfer 131 (2009) 043211-1-043211-15.
54. Cao, J. Cheng, P., and Hong, F.J. "Applications of Electrohydrodynamics and Joule Heating Effects in Microfluidic Chips: A Review,"Sci China SerE-Tech Sci. 52 (2009) 3477-3490.
55. Hong, F.J., Cheng,P. “Three dimensional numerical analyses and optimization of offset strip-fin microchannel heat sinks,” Int. Comm. Heat & Mass Transfer 36 (2009) 651-656.
56. Qu, J. Wu, H.Y., Cheng, P. Wang, X. “Non-linear analyses of temperature oscillations in a closed-loop pulsating heat pipe,” International Journal of Heat and Mass Transfer 52 (2009) 3481–3489.
57. Hao, L. and Cheng, P., “An Analytical Model for Micro-Droplet Steady Movement on the Hydrophobic Wall of a Micro-Channel”, Int. J. Heat Mass Transfer 53 (2010) 1243-1246.
58. Chen, Gang, Quan Xiaojun, and Cheng, P. “Effects of surfactant additive on flow boiling over a microheater under pulse heating”, Int. J. Heat Mass Transfer 53 (2010) 1586-1590.
59. Hao, L., Cheng, P. “Lattice Boltzmann simulations of water transport in gas diffusion layer of a polymer electrolyte membrane fuel cell”, J. of Power Sources 195 (2010) 3870-3881.
60. Hao, L., and Cheng, P. “Pore-Scale Simulations on Relative Permeabilities of Porous Media by Lattice Boltzmann Method,” Int. J. Heat Mass Transfer 53 (2010) 1908-1913.
61. Qu, J., Wu, H. Y., and Cheng, P., “Thermal performance of an oscillating heat pipe with Al2O3 –water nanofluids”, Int. Comm. Heat Mass Transfer 37 (2010) 111-115.
62. Wang G D, Hao L, Cheng, P., “A Four-Zone Model for Saturated Flow Boiling in a Microchannel of Rectangular Cross-Section”, Int. J. Heat Mass Transfer 53 (2010) 3439-3448.
63. Chen G, Quan, X. J., and Cheng, P “Effects of Pulse Width and Mass Flux on Microscale Flow Boiling under Pulse Heating,” Int. Comm. Heat Mass Transfer 37 (2010) 792-795.
64. Quan, X. J., Dong, L. N. and Cheng, P., “Determination of Annular Condensation Heat Transfer Coefficient of Steam in Microchannels with Trapezoidal Cross Sections,” Int. J. Heat Mass Transfer 53(2010)3670-3676.
65. Quan, X. J., Chen G, and Cheng, P., “Periodic Generation and Transport of Micro Air Bubble in Co-flowing of Water in Microchannels,” Int. Comm. Heat Mass Transfer 37 (2010), pp. 992-997.
66. Gong, S., Cheng, P., and Quan, X. J., “Lattice Boltzmann Simulation of Droplet Formation in Microchannels under an Electric Field”, Int. J. Heat Mass Transfer 53 (2010) 5863-5870.
67. Hong, F. J., Cao, J., and Cheng, P., “A Parametric Study of AC Electrothermal Flow in Microchannels with Asymmetrical Interdigitated Electrodes,” Int. Comm. Heat Mass Transfer 38(2011)275-279.
68. Quan, X.J., Chen, G., and Cheng, P., “A Thermodynamic Analysis for Heterogeneous Boiling Nucleation on a Superheated Wall,” Int. J. Heat Mass Transfer 54 (2011) 4762-4769.
69. Yang X. G., Ye, Q. and Cheng, P., “Matching of Water and Temperature Fields in Proton Exchange Membrane Fuel Cells with Non-Uniform Distributions,” Int. J. of Hydrogen Energy 36 (2011) 12524-12537.
70. Hong, F. J., Cheng, P. and Wu, H.Y. “Characterization on The Performance of a Fractal-shaped Microchannel Network for Microelectronic Cooling.” Journal of Micromechanics and Microengineering, 21 (2011) 065018 (7pp).
71. Quan X J, Chen G, Cheng P, “Effects of Electric Field on Microbubble Growth in a Microchannel under Pulse Heating”, International Journal of Heat and Mass Transfer, 54 (2011) 2110-2115.
72. Hao, L. and Cheng, P., “Capillary Pressures in Carbon Paper Gas Diffusion Layers Having Hydrophilic and Hydrophobic Pores”, Int. J. Heat Mass Transfer 55 (2012) 133-139.
73. Gong, S., Cheng, P., “Numerical Investigation of Droplet Motion and Coalescence by an Improved Lattice Boltzmann Model for Phase Transitions and Multiphase Flows”, Computers and Fluids 53 (2012) 93-104.
74. Hong F.J., Bai,F. and Cheng, P., “Numerical Simulation of AC Electrothermal Micropump Using a Fully Coupled Model”, Microfluid Nanofluid 2012,13(3): 411-420.
75. Hong F.J., Jiang D D, and Cheng, P., “Frequency-dependent Resonance and Asymmetric Droplet Oscillation under AC Electrowetting on Coplanar Electrodes”. Journal of Micromechanics and Microengineering, 22 (2012) 085024.
76. Chen, G., Cheng, P., Quan, X. J., “A Transient Model for Heterogeneous Nucleation under Pulse Heating in Pool Boiling,” Int. J. Heat Mass Transfer 55 (2012) 3893-3899.
77. Dong, N. L., Quan, X. L., Cheng, P., “An Analysis of surface-microstructures effects on heterogeneous nucleation in pool boiling”, Int. J. Heat Mass Transfer 55 (2012) 4376-4384.
78. Dong, N. L., Cheng, P, and Quan, X. L., “Availability Analyses for Heterogeneous Nucleation under Steady Heating in Pool Boiling,” Int. Comm. Heat Mass Transfer, 39 (2012)776-780.
79. Gong S, Cheng P, “A lattice Boltzmann method for Simulation of Liquid-vapor Phase-change Heat Transfer”, International Journal of Heat and Mass Transfer 55 (2012) 4923-4927.
80. Yang X G, Ye Q, Cheng P, “Hydrogen Pumping Effect Induced by Fuel Starvation in a Single Cell of a PEM Fuel Cell Stack at Galvanostatic Operation”, Int. J. Hydrogen Energy 37 (2012) 14439-14453.
81. Yang X G, Ye Q, Cheng P, “In-plane Transport Effects on Hydrogen Depletion and Carbon Corrosion Induced by Anode Flooding in Proton Exchange Membrane Fuel Cells”, Int. J. Heat Mass Transfer 55 (2012) 4754-4765.
82. Ye Q,Yang X G, Cheng P, “Modeling of Spontaneous Hydrogen Evolution in a Direct Methanol Fuel Cell”, Electrochimica Acta 69 (2012) 230-238.
83. Gao, M., Zhang, L.X, Cheng, P, Quan, X.J., “An Investigation of Microlayer Beneath Nucleation Bubble by Laser Interferometric Method,” International Journal of Heat and Mass Transfer 57 (2013) 183-189.
84. Huang R Z, Wu H Y, Cheng P. “A New Lattice Boltzmann Model for Solid-liquid Phase Change”. Int. J. Heat Mass Transfer 59 (2013) 295-301.
85. Liu X. L. and Cheng, P., “Lattice Boltzmann Simulation of Steady Laminar Film Condensation on a Vertical Hydrophilic Subcooled Flat Plate”, International Journal of Heat and Mass Transfer, 62 (2013) 507-514.
86. Gong, S., and Cheng, P., “Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling,” Int. Journal of Heat and Mass Transfer 64 (2013) 122–132.
87. Liu, X. L., and Cheng, P. “Lattice Boltzmann Simulation for Dropwise Condensation of Vapor along Vertical Hydrophobic Flat Plates”, Int. Journal of Heat and Mass Transfer 64 (2013) 1041-1052.
88. Quan X J, Chen G, Cheng P., “A Thermodynamic Analysis for Heterogeneous Boiling Nucleation under an External Electric Field”, Int.J. Heat MassTransfer 65 (2013) 308-313.
89. Gao M, Cheng P, Quan X.J, “An Experimental Investigation on Effects of an Electric Field on Bubble Growth on a Small Heater in Pool Boiling”, Int. J. Heat Mass Transfer 67 (2013) 984-991.
90. Hong F J, Cheng P, Wu H Y, Sun Z, “Evaporation/Boiling Heat Transfer on Capillary Feed Copper Particle Sintered Porous Wick at Reduced Pressure”, International Journal of Heat and Mass Transfer 63 (2013) 389-400.
91. Yang X G, Ye Q, Cheng P. “Oxygen Starvation Induced Cell Potential decline and Corresponding Operating State Transitions of a Direct Methanol Fuel Cell in Galvanostatic Regime”, Electrochimica Acta 117 (2014) 179-191.
92. Dong L N, Quan X J, Cheng P, “An Experimental Investigation of Enhanced Pool Boiling Heat Transfer from Surfaces with Micro/Nano-Structures”, International Journal of Heat and Mass Transfer 71 (2014) 189-196.
93. Gong S and Cheng P. “Numerical Investigation of Saturated Flow Boiling in Microchannels by the Lattice Boltzmann Method”, Numerical Heat Transfer, Part A, 65 (2014) 644-661.
94. Liu, X J, Cheng P, QuanX J, “Lattice Boltzmann Simulations for Self-propelled Jumping of Droplets after Coalescence on a Superhydrophobic Surface”, Int. Journal of Heat and Mass Transfer, 73 (2014) 195-200.
95. Quan X J, Dong L N, and Cheng P. “A CHF Model for Saturated Pool Boiling on a Heated Surface with Micro/Nano-Scale Structures”, Int. J. Heat Mass Transfer 76 (2014) 452-458.
96. Yang L H, Quan X.J. and Cheng P., Cheng Z M, “A Free Energy Model and Availability Analysis for Onset of Condensation on rigid and Liquid Surfaces in Moist Air”, International Journal of Heat and Mass Transfer, 78 (2014) 460–467.
97. Yang K, Hong F J, Cheng P, “A Fully Coupled Numerical Simulation of Sessile Droplet Evaporation Using Arbitrary Lagrangian-Eulerian Formulation”. International Journal of Heat and Mass Transfer, 70 (2014) 409-420.
98. Hong F J, Bai F, Cheng P, “A Parametric Study of Electrothermal Flow Inside an AC EWOD Droplet”. International Communications in Heat and Mass Transfer, 55 (2014) 63-70.
99. Quan X.J., Yang L H, Cheng P, “Effects of Electric Fields on Onset of Dropwise Condensation Based on Gibbs Free Energy and Availability Analyses”, International Communications in Heat and Mass Transfer, 58 (2014),105–110.
100. Gao M, Quan X.J., Cheng P, “An Experimental Investigation on EHD Effects in the Thin-film Region of an Evaporating Meniscus”, International Communications in Heat and Mass Transfer, 56 (2014) 159-164.
101. Cheng P, Quan X.J., Gong S., Liu X L and Yang L H, “Chapter Four-Recent Analytical and Numerical Studies on Phase-change Heat Transfer”, Advances in Heat Transfer 46 (2014) 187-248.
102. F.J. Hong C.Y. Zhang, W. He, P. Cheng, G. Chen, “Confined jet array impingement boiling of subcooled aqueous ethylene glycol solution,” International Communications in Heat and Mass Transfer 56 (2014) 165-173.
103. Gong S., Cheng P. “Numerical Simulation of Pool Boiling Heat Transfer on Smooth Surfaces with Mixed Wettability by Lattice Boltzmann Method”, International Journal of Heat and Mass Transfer 80 (2015) 206-216.
104. Liu X L, Cheng P, “Dropwise Condensation Theory Revisited: Part I. Droplet Nucleation Radius”, International Journal of Heat and Mass Transfer, 83 (2015) 833-841.
105. Liu X L, Cheng P, “Dropwise Condensation Theory Revisited: Part II. Droplet Nucleation Density and Condensation Heat Flux”, International Journal of Heat and Mass Transfer, 83 (2015) 842-849.
106. Gong S., Cheng P, “Lattice Boltzmann Simulations for Surface Wettability Effects in Saturated Pool Boiling Heat Transfer”, International Journal of Heat and Mass Transfer 85 (2015) 635-646.
107. Quan X.J., Gao M., Cheng P, Li J. S., “An Experimental Investigation of Pool Boiling Heat Transfer on Smooth/rib Surfaces under an Electric Field”, International Journal of Heat and Mass Transfer 85 (2015) 595–608.
108. Zhang, C Y, Hong F C, and Cheng P., “Simulation of liquid thin film evaporation and boiling on a heated hydrophilic microstructured surface by Lattice Boltzmann method”, Int. Journal of Heat Mass Transfer 86 (2015) 629-638.
109. Liu X L, Cheng P., “3D Multiphase Lattice Boltzmann Simulations for Morphological Effects on Self-Propelled Jumping of Droplets on Textured Superhydrophobic Surfaces”, Int. Comm. in Heat and Mass Transfer 64 (2015) 7–13.
110. Zhaolong Wang, Xiaojun Quan, Zhuomin Zhang, Ping Cheng, “Numerical studies on absorption characteristics of plasmonic metamaterials with an array of nanoshells,” International Communications in Heat and Mass Transfer 68 (2015) 172–177.
111. Zhaolong Wang, Xiaojun Quan, Wei Yao, Lei Wang, Ping Cheng, “Plasma resonance effects on bubble nucleation in flow boiling of a nanofluid irradiated by a pulsed laser beam,” International Communications in Heat and Mass Transfer, 72 (2016) 90–94.
112. C.Y. Zhang, T. Wang, D.H. Chen, F.J. Hong, P. Cheng, “Confined jet array impingement cooling with spent flow distraction using NEPCM slurry,” International Communications in Heat and Mass Transfer 77 (2016) 140-147.
113. Shuai Gong, Ping Cheng, Xiaojun Quan, “Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces. Part I: Bubble nucleation in a single cavity at low Superheats,” International Journal of Heat and Mass Transfer 100 (2016) 927–937.
114. Shuai Gong, Ping Cheng, Xiaojun Quan, “Two-dimensional mesoscale simulations of saturated pool boiling from rough surfaces. Part II: Bubble interactions above multi-cavities,” International Journal of Heat and Mass Transfer 100 (2016) 938–948.
115. Chaoyang Zhang, Ping Cheng, Fangjun Hong, “Mesoscale simulation of heater size and subcooling effects on pool boiling under controlled wall heat flux conditions,” International Journal of Heat and Mass Transfer 101 (2016) 1331–1342.
116. Xu Wang, Ping Cheng, Xiaojun Quan, “Molecular dynamics simulations of thermal boundary resistances in a liquid between two solid walls separated by a nano gap,” International Communications in Heat and Mass Transfer 77 (2016) 183–189.
117. Chaoyang Zhang, Ping Cheng, Jianguang Cao, “Mesoscale simulation of Marangoni convection about a vapor bubble in a liquid with temperature gradients under microgravity conditions,” International Communications in Heat and Mass Transfer 78 (2016) 295–303.
118. P. Cheng, X. Quan, S. Gong, X. Liu, F. Hong, Pushing the boundaries of scientific research: 120 years of addressing global issues, Science, 351(6278) (2016) 8-11.
119. Xiaojun Quan, Dongmin Wang, Ping Cheng, An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid, International Journal of Heat and Mass Transfer 108 (2017) 32-40.
120. Jianan Zhao, Ping Cheng, A lattice Boltzmann method for simulating laser cutting of thin metal plates, International Journal of Heat and Mass Transfer 110 (2017) 94–103.
121. Chaoyang Zhang, Ping Cheng, Mesoscale simulations of boiling curves and boiling hysteresis under constant wall temperature and constant heat flux conditions, International Journal of Heat and Mass Transfer 110 (2017) 319–329.
122. Xiaoping Li, Ping Cheng, Lattice Boltzmann simulations for transition from dropwise to filmwise condensation on hydrophobic surfaces with hydrophilic spots, International Journal of Heat and Mass Transfer 110 (2017) 710-722.
123. Xiaojing Ma, Ping Cheng, Shuai Gong, Xiaojun Quan, Mesoscale simulations of saturated pool boiling heat transfer under microgravity conditions. International Journal of Heat and Mass Transfer, 114 (2017) 453-457.
124. Xiaoping Li, Jianan Zhao, Ping Cheng, A lattice Boltzmann model for condensation and freezing of dry saturated vapor about a cryogenic spot on an inclined hydrophobic surface, International Journal of Heat and Mass Transfer, 114 (2017) 628-639.
125. Chaoyang Zhang, Ping Cheng, W. J. Minkowycz, Lattice Boltzmann simulation of forced condensation flow on a horizontal cold surface in the presence of a non-condensable gas. International Journal of Heat and Mass Transfer, 2017, 115 (Part B): 500-512.
126. Shuai Gong, Ping Cheng, Direct numerical simulations of pool boiling curves including heater's thermal responses and the effect of vapor phase's thermal conductivity, International Communications in Heat and Mass Transfer 87 (2017) 61–71.
127. Jianan Zhao, Xiaoping Li, and Ping Cheng, Lattice Boltzmann simulation of a droplet impact and freezing on cold surfaces, International Communications in Heat and Mass Transfer 87 (2017) 175–182.
128. Ping Cheng, Chaoyang Zhang, Shuai Gong, Lattice Boltzmann Simulations of Macro/Microscale Effects on Saturated Pool Boiling Curves for Heated Horizontal Surfaces, Journal of Heat Transfer, 2017, 139(11): 110801.
129. Zhaolong Wang, Xiaoping Li, Daheng Chen, Xiaojun Quan, Ping Cheng, Experimental investigation on bubble nucleation in flow boiling of a nanofluid with plasmon resonance effects irradiated by a pulsed laser beam, China Science paper 12(23) (2017) 2651-2655.
130. L.N. Dong, S. Gong, P. Cheng, Direct numerical simulations of film boiling heat transfer by a phase-change lattice Boltzmann method, International Communications in Heat and Mass Transfer 91 (2018) 109-116.
131. D.B. Huang, X.J. Quan, and P. Cheng. An analysis on heterogeneous bubble nucleation around a nanoparticle based on density functional approach. International Communications in Heat and Mass Transfer 93 (2018): 66-73.
132. D. Wang, X. Quan, C. Liu, P. Cheng. An experimental investigation on periodic single bubble growth and departure from a small heater submerged in a nanofluid containing moderately hydrophilic nanoparticles, International Communications in Heat and Mass Transfer. 95 (2018) 1-8.
133. T. Lin, J.J.Li, X.J. Quan, P. Cheng. A molecular dynamics investigation on effects of nanostructures on thermal conductance across a nanochannel. International Communications in Heat and Mass Transfer, 97(2018): 118-124.
134. W. Xiong, P. Cheng, Mesoscale simulation of a molten droplet impacting and solidifying on a cold rough substrate, International Communications in Heat and Mass Transfer. 98 (2018) 248–257.
135. Z.L.Wang, X.J. Quan, Z.M. Zhang, P. Cheng. Optical absorption of carbon-gold core-shell nanoparticles, Journal of Quantitative Spectroscopy & Radiative Transfer 205 (2018) 291–298.
136. Z.L. Wang, Z.M. Zhang, X.J. Quan, P. Cheng. A perfect absorber design using a natural hyperbolic material for harvesting solar energy, Solar Energy 159 (2018) 329–336.
137. P. Cheng, S. Gong, C.Y. Zhang, Lattice Boltzmann Simulations of Saturated Pool Boiling from Smooth and Rough Horizontal Surfaces, Encyclopedia of Two-Phase Heat Transfer and Flow IV, WORLD SCIENTIFIC, 2018: 209-238.
138. W. Xiong, P. Cheng, 3D lattice Boltzmann simulation for a saturated liquid droplet at low Ohnesorge numbers impact and breakup on a solid surface surrounded by a saturated vapor, Computer Fluids. 168 (2018) 130–143.
139. Z.L. Wang, Z.M. Zhang, X.J. Quan, P. Cheng, A numerical study on effects of surrounding medium, material, and geometry of nanoparticles on solar absorption efficiencies, International Journal of Heat and Mass Transfer 116 (2018) 825–832.
140. W. Xiong, P. Cheng, Numerical investigation of air entrapment in a molten droplet impacting and solidifying on a cold smooth substrate by 3D lattice Boltzmann method, International Journal of Heat and Mass Transfer 124 (2018) 1262–1274.
141. X.J. Ma, P. Cheng, X.J. Quan, Simulations of saturated boiling heat transfer on bio-inspired two-phase heat sinks by a phase-change lattice Boltzmann method, International Journal of Heat and Mass Transfer, 2018,127: 1013-1024.
142. Q. Guo, P. Cheng, 3D lattice Boltzmann investigation of nucleation sites and dropwise-to-filmwise transition in the presence of a non-condensable gas on a biomimetic surface, International Journal of Heat and Mass Transfer. 128 (2019) 185–198.
143. D. Wang, P. Cheng. A solid-liquid local thermal non-equilibrium lattice Boltzmann model for heat transfer in nanofluids. Part I: Model development, shear flow and heat conduction in a nanofluid, International Journal of Heat and Mass Transfer. 130 (2019) 1288-1298.
144. D. Wang, P. Cheng, X. Quan. A solid-liquid local thermal non-equilibrium lattice Boltzmann model for heat transfer in nanofluids. Part II: Natural convection of nanofluids in a square enclosure, International Journal of Heat and Mass Transfer. 130 (2019) 1358–1365.
版权专利
- 集成微热沉系统及其制备方法 发明专利 吴慧英,郑平,刘恩光ZL200710041126.3
- 微通道中利用电热流驱动流体运动的方法 发明专利 曹军,郑平,洪芳军 ZL200710041114.0
- 利用微气泡喷射沸腾冷却微电子芯片的方法 发明专利 王国栋,郑平ZL200810034853.1
- 用于微通道中电场强化换热性能测试装置及其测试方法 发明专利 高明,郑平ZL201010245043.8
- 一种真空腔均热板, 发明专利,全晓军、刘修良、郑平,201310751930.6
- 一种换热器表面涂层以及换热器表面处理方法,发明专利,全晓军,杨鹭航,郑平,程志明, 201310671937.7
参考资料
- ↑ 郑平 中国科学院学部网
- ↑ 教师名录——郑平教授 上海交通大学机械与动力工程学院