求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

陈容(研究员)查看源代码讨论查看历史

跳转至: 导航搜索
陈容
福州大学数学与统计学院

陈容,女,副研究员,博士生导师。2010年6月毕业于南开大学组合数学中心,获理学博士学位。同年7月来福州大学离散中心工作。

研究方向

图论组合几何(又名拟阵)、代数和组合。

科研项目

◆可表示框架拟阵和可表示提升图拟阵的刻画问题,国家自然科学基金面上项目,2020.1-2023.12,主持

◆与准图拟阵相关的结构刻画问题,福建省自然科学基金面上项目,2019.6-2022.5,主持

◆不含某些子式的拟阵结构,国家自然科学基金青年项目,2013.1-2015.12,主持

◆拟阵的不等价表示与Splitter定理,教育部博士点专项基金,2012.1-2014.12,主持

学术交流

2016.10-2017.10访问滑铁卢大学Jim Geelen教授。

2015.10.24-2016.1.12访问惠灵顿维多利亚大学Geoff Whittle教授。

2014.7.26-2014.8.8访问滑铁卢大学Jim Geelen教授。

2013.8.15-2013.9.5访问西澳大学Gordon Royle教授和Irene Pivotto博士。

2013.3.6-2014.2.28访问惠灵顿维多利亚大学Geoff Whittle教授。

学术成果

论文

◆ R. Chen, The 9-connected excluded minors for the class of quasi-graphic matroids, submitted.

◆ B. Bao, R. Chen, G. Fan, Circuit covers of signed Eulerian graphs, Electron. J. Combin, 28(1) (2021) #P1.14.

◆ R. Chen, J. Geelen, Infinitely many excluded minors for frame matroids and for lifted-graphic matroids,J. Combin. Theory Ser. B, 133 (2018) 46-53.

◆ R. Chen, I. Pivotto, Biased graphs with no two vertex-disjoint unbalanced cycles,J. Combin. Theory Ser. B, 130 (2018) 207-245.

◆ R. Chen, G. Whittle, On recognising frame and lifted-graphic matroids, J. Graph Theory, 87 (2018) 72-76.

◆ R. Chen, The excluded minors for the class of matroids that are graphic or bicircular lift, Adv. Appl. Math,83 (2017) 97-114.

◆ R. Chen, Z. Gao, Representations of bicircular lift matroids,Electron. J. Combin, 23(3) (2016) #P3.42.

◆ R. Chen, M. DeVos, D. Funk, I. Pivotto, Graphical representations of graphic frame matroids, Graphs. Combin. 31(2015) 2075-2086.

◆ R. Chen, G. Whittle, Intertwining connectivity in matroids, SIAM J. Discrete Math. 58 (2014) 37-62.

◆ R. Chen, The structure of 4-flowers of vertically 4-connected matroids, Adv. Appl. Math,58 (2014) 37-62.

◆ R. Chen, Crossing 3-separations in 3-connected Matroids, Discrete Math. 313 (2013) 677-688.

◆ R. Chen, K. Xiang,Decomposition of 3-connected representable matroids,J. Combin. Theory Ser. B 102 (2012) 647-670.

◆ J. Bonin, R. Chen, K. Xiang, Amalgams of extremal matroids with no U_{2, l+2}-minor, Discrete Math. 310 (2010) 2317-2322.

◆ R. Chen, K. Xiang, A note on totally free matroids, Graphs. Combin. 25 (2009) 657-673.[1]

参考资料