101,894
次編輯
變更
轨迹
,创建页面,内容为“{{Infobox person | 名称 = '''轨迹''' | 图像 = File:9158713 105806271120 2.jpg|缩略图||center|[http://pic19.nipic.com/20120228/9158713_1058062…”
{{Infobox person
| 名称 = '''轨迹'''
| 图像 =
[[File:9158713 105806271120 2.jpg|缩略图||center|[http://pic19.nipic.com/20120228/9158713_105806271120_2.jpg 原图链接] [http://www.nipic.com/show/5766770.html 来自昵图网]]]
}}
'''<big>轨迹</big>''',符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的[[集合]],叫做满足该条件的点的轨迹。轨迹,包含两个方面的问题,凡在轨迹上的点都符合给定的条件,这叫做[[轨迹的纯粹性]](也叫做必要性)。<ref>[https://wenda.so.com/q/1535647868211671 卫星运动轨迹为什么是椭圆?]</ref>
另外凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做[[轨迹的完备性]](也叫做充分性)。
==基本信息==
中文名称 <ref>[https://wenda.so.com/q/1374654998066100 若一颗卫星运动轨迹是个椭圆,中心天体在焦点上,在某时刻两球心间距离R,可以用a=v方/R算加速度吗?]</ref>
轨迹
外文名称
Trajectory
'''概念'''
符合一定条件的动点所形成的图形
[[File:轨迹1.jpg|缩略图]]
'''特性'''
纯粹性、完备性
'''概述'''
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.
【例如】A,B是两个定点,k(>0)是一个常数,满足MA:MB=k的动点M的轨迹:
在平面上表示一条直线(k=1)或一个圆周(k≠1);
在空间内表示一条平面(k=1)或一个球面(k≠1)。
【轨迹方程】 就是与几何轨迹对应的代数描述。
平面轨迹一般是曲线,空间轨迹一般是曲面。
'''[[点的轨迹]]'''
符合某一条件的所有的点的集合,叫做符合这个条件的点的轨迹。这里含有两层意思(1)图形是有符合条件的那些点组成的,即图形上的任何一点都满足条件。(2)图形包含了符合条件的所有的点,即符合条件的任意一点都在图形上。
'''常见的平面内点的轨迹'''
[[File:轨迹3.jpg|缩略图]]
到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
到已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线。
到已知角的两边距离相等的点的轨迹,是这个角的角平分线。
到直线L的距离等于定长D的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的的两条直线。
到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线。
到两定点距离和等于常数(大于两定点的距离)的点的轨迹是以两定点为焦点的椭圆。
到两定点的距离的差的绝对值等于常数(小于两定点的距离)的点的轨迹,是以两定点为焦点的双曲线。
到一个定点和一条定直线(定直线不过定点)距离相等的点的轨迹,是以定点为焦点,定直线为准线的抛物线。
== 參考來源 ==
{{Reflist}}
[[Category:330 物理學總論]]
| 名称 = '''轨迹'''
| 图像 =
[[File:9158713 105806271120 2.jpg|缩略图||center|[http://pic19.nipic.com/20120228/9158713_105806271120_2.jpg 原图链接] [http://www.nipic.com/show/5766770.html 来自昵图网]]]
}}
'''<big>轨迹</big>''',符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的[[集合]],叫做满足该条件的点的轨迹。轨迹,包含两个方面的问题,凡在轨迹上的点都符合给定的条件,这叫做[[轨迹的纯粹性]](也叫做必要性)。<ref>[https://wenda.so.com/q/1535647868211671 卫星运动轨迹为什么是椭圆?]</ref>
另外凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做[[轨迹的完备性]](也叫做充分性)。
==基本信息==
中文名称 <ref>[https://wenda.so.com/q/1374654998066100 若一颗卫星运动轨迹是个椭圆,中心天体在焦点上,在某时刻两球心间距离R,可以用a=v方/R算加速度吗?]</ref>
轨迹
外文名称
Trajectory
'''概念'''
符合一定条件的动点所形成的图形
[[File:轨迹1.jpg|缩略图]]
'''特性'''
纯粹性、完备性
'''概述'''
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.
【例如】A,B是两个定点,k(>0)是一个常数,满足MA:MB=k的动点M的轨迹:
在平面上表示一条直线(k=1)或一个圆周(k≠1);
在空间内表示一条平面(k=1)或一个球面(k≠1)。
【轨迹方程】 就是与几何轨迹对应的代数描述。
平面轨迹一般是曲线,空间轨迹一般是曲面。
'''[[点的轨迹]]'''
符合某一条件的所有的点的集合,叫做符合这个条件的点的轨迹。这里含有两层意思(1)图形是有符合条件的那些点组成的,即图形上的任何一点都满足条件。(2)图形包含了符合条件的所有的点,即符合条件的任意一点都在图形上。
'''常见的平面内点的轨迹'''
[[File:轨迹3.jpg|缩略图]]
到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆。
到已知线段两个端点的距离相等的点的轨迹,是这条线段的垂直平分线。
到已知角的两边距离相等的点的轨迹,是这个角的角平分线。
到直线L的距离等于定长D的点的轨迹,是平行于这条直线,并且到这条直线的距离等于定长的的两条直线。
到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线。
到两定点距离和等于常数(大于两定点的距离)的点的轨迹是以两定点为焦点的椭圆。
到两定点的距离的差的绝对值等于常数(小于两定点的距离)的点的轨迹,是以两定点为焦点的双曲线。
到一个定点和一条定直线(定直线不过定点)距离相等的点的轨迹,是以定点为焦点,定直线为准线的抛物线。
== 參考來源 ==
{{Reflist}}
[[Category:330 物理學總論]]