求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

量子纠缠

增加 240 位元組, 3 年前
無編輯摘要
'''应用学科''' :量子力学
|}
'''<big>量子纠缠</big>'''(quantum entanglement),或称量子缠结,是一种量子[[力学现象]],是1935年由爱因斯坦、波多尔斯基和罗森提出的一种波,其量子态表达式:其中x1,x2分别代表了两个粒子的坐标,这样一个量子态的基本特征是在任何表象下,它都不可以写成两个子系统的量子态的直积的形式。 定义上描述复合系统(具有两个以上的成员系统)之一类特殊的量子态,此量子态无法分解为成员系统各自量子态之张量积(tensor product)。量子纠缠技术是安全的传输信息的加密技术,与超光速传递信息相关。尽管知道这些粒子之间"交流"的速度很快,但我们目前却无法利用这种联系以如此快的速度控制和传递信息。因此爱因斯坦提出的规则,也即任何信息传递的速度都无法超过光速,仍然成立。 实际上的纠缠作用并不很远。2016年12月,从中国科学技术大学获悉,潘建伟院士及同事陆朝阳、陈宇翱等近期在量子信息科研领域再获重大突破,他们通过两种不同的方法制备了综合性能最优的纠缠光子源,首次成功实现"十光子纠缠",再次刷新了光子纠缠态制备的世界纪录。2017年6月15日公布,中国量子科学实验卫星"墨子号"迎来了第一项重大成果,率先成功实现"千公里级"的星地双向量子纠缠分发,打破了此前国际上保持多年的"百公里级"纪录。2018年2月,中国实现星地千公里级量子纠缠和密钥分发及隐形传态,荣获科技部2017年度中国科学十大进展。<ref>[http://news.eastday.com/c/20181224/u1a14479005.html  中国科学家首次实现量子纠缠态自检验,具高可靠、抗干扰特性, 东风网 2018-12-24] </ref>
== 简介 ==
== 理论发展 ==
=== 理论产生===从19世纪末到20世纪初, [[ 量子力学 ]] 快速发展并完善起来,解决了许多经典理论不能解释的现象,大量的实验事实及实际应用也证明了量子力学是一个成功的物理理论。但是关于量子力学的基本原理的理解却存在不同的解释。众多的物理学家在自己观点的指引下,对量子力学的基本解释提出了自己的看法,主要有三种:传统解释、PTV系统解释和统计解释,这三种解释之间既有区别又有联系。传统解释出发点是量子假设,强调微观领域内每个原子过程或基元中存在着本质的不连续,其核心思想是玻尔的互补原理(并协原理),还接受了玻恩对态函数的概率解释,并把这种概率理解为是同一个粒子在给定时刻出现在某处的概率密度。PTV系统解释的代表是玻姆,这种解释试图通过构造各种隐变量量子论来寻找量子力学的决定论基础,即为态函数的概率解释建构决定论的基石,目的是在微观物理学领域内恢复决定论和严格因果性,消除经典世界同量子世界的独特划分,回到经典物理学的预设概念,建立物理世界的统一说明。统计解释认为态函数是对统计系统的描述,量子理论是关于系统的统计理论,这个系统是由全同地(或相似的)制备的系统组成,不需要一个预先确定的动力学变量的集合,是一种最低限度的系统解释。上面讲到三种观点之间,是既有联系又有区别,正是由于各方都坚持己见,才有了著名的爱因斯坦与玻尔之间的论战。(爱因斯坦说:"上帝不掷骰子。"玻尔说:"亲爱的爱因斯坦不要指挥上帝做什么。")量子纠缠才被爱因斯坦以一个悖论的疑问提出。量子纠缠就此提出。1927年9月,玻尔在科摩会议中首度公开地演讲他的互补原理,由于他采用了大量的哲学语言来阐释互补原理,使大家感到震惊与困惑。当时大多数人对于测不准关系及互补原理的深刻内涵还不大明了。几个星期后在布鲁塞尔举行的第五届solvya会议,包括玻尔、爱因斯坦、玻恩、薛定谔、海森堡等世界最著名的科学家都出席了这项盛会。玻尔在会议中重述了他在科摩会议上的观点。由于爱因斯坦并未参加科摩会议,因为目前地球上面能干扰量子纠缠的环境基本没有,他出席了也没有任何的证明量子学还是在他的知识理论下。但他知道,量子纠缠在黑洞,及更小的等级时绝对会干扰量子纠缠,这还是他首次听到玻尔亲自阐述互补原理和对量子力学的诠释。
== 理论完善 ==
== 应用领域 ==
纠缠态作为一种物理资源,在量子信息的各方面,如量子隐形传态、量子密钥分配、量子计算等都起着重要作用。[5] 然而,受实验条件限制和不可避免的环境噪声的影响,制备出来的纠缠态并非都是最大纠缠态:另一方面,纯纠缠态受环境的消相干作用也会退化成为混合态。使用这种混合纠缠态进行量子通信和量子计算将会导致信息失真。为达到更好的量子通信或量子计算效果,需要通过纠缠纯化技术将混合纠缠态纯化成纯纠缠态或者接近纯纠缠态。因此,如何提纯高品质的量子纠缠态是量子信息研究中的重要课题。常见量子纠缠态应用,例如:量子通讯应用于量子态隐形传输;量子计算应用于量子计算机,量子计算在实现技术上有严重的挑战,实现这一问题要解决另外三个问题--量子算法、量子编码、实现量子计算的物理体系,量子保密通讯也广泛应用于量子密码术中。
== 量子互联网 ==
== 相关视频 ==
“量子纠缠”中究竟蕴含着怎样的秘密?{{#iDisplay:m01715s89u7a3155v4fwel|780|460|qq}}
== 相关资讯 ==
[[Category:330 物理學總論]]
6,567
次編輯