求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

祖暅

移除 2 位元組, 6 年前
無編輯摘要
| 别名 = 祖景烁、祖暅之
| 职业 = 数学家,天文学家
| 主要成就 = 提出"祖暅原理" <br> <br> <br> [[ ]]
}}
== '''<big>祖暅</big>''' ==
<p style=text-indent:2em;>祖冲之父子总结了魏晋时期著名数学家刘徽的有关工作,提出“幂势既同则积不容异”,即等高的两立体,若其任意高处的水平截面积相等,则这两立体体积相等,这就是著名的祖暅公理(或刘祖原理)。祖暅应用这个原理,解决了刘徽尚未解决的球体积公式。该原理在西方直到十七世纪才由意大利数学家卡瓦列利(BonaventuraCavalier)发现,比祖暅晚一千一百多年。祖暅是我国古代最伟大的数学家之一。
== 人物简介 ==
<p style=text-indent:2em;>祖暅(geng更) 又名祖暅之,字景烁,是我国 [[ 南北朝时代南 ]] 朝的数学家、科学家[[祖冲之 ]]的儿子。
<p style=text-indent:2em;>历任太府卿等职,生卒年代不详。受家庭的影响,尤其是父亲的影响,他从小就热爱科学,对数学具有特别浓厚的兴趣,祖冲之在462年编制《大明历》就是在祖暅三次建议的基础上完成的。《缀术》一书经学者们考证,有些条目就是祖暅所作。祖暅终生读书专心致志,因走路时思考问题所以闹出了许多笑话。祖暅原理是关于球体体积的计算方法,这是祖暅一生最有代表性的发现。
<p style=text-indent:2em;>祖暅(geng)原理是指所有等高处横截面积相等的两个同高立体,其体积也必然相等的定理。祖暅《缀术》有-(云)-“缘幂势既同,则积不容异。”祖冲之父子采用这一原理,求出了牟合方盖的体积,进而算出球体积。在欧洲17世纪意大利数学家卡瓦列里亦发现相同定理,所以西方文献一般称该原理为卡瓦列里原理。
<p style=text-indent:2em;>在现代的解析几何和测度应用中,祖暅原理是富比尼定理中的一个特例。卡瓦列里没有对这条的严谨证明,只发表在1635年的Geometriaindivisibilibu'以及1647年的ExercitationesGeometrica'中,用以证明自己的MethodederIndivisibilie'。以此方式可以计算某些立体的体积,甚至超越了阿基米德和克卜勒的成绩。这个定理引发了以面积计算体积的方法并成为了积分发展的一个重要步骤。
<p style=text-indent:2em;>'''<big>圆柱体</big>''' <p style=text-indent:2em;> 如果垂直转轴切开圆柱体,设为半径,可以得到横切面面积为的圆形。根据祖暅原理,圆柱体的体积相等于方形面积相等于圆面积的立方体。<p style=text-indent:2em;>'''<big>半球体</big>''' <p style=text-indent:2em;> 从其中一层以垂直表面的高横切半径为的半球体,根据勾股定理,求半径,横切面面积。对照立体是一个拥有与半球体相同表面积和高的立体,中间有一个圆锥体。高的对照立体环形切面有内圆周以及外圆周,因此两个立体都满足祖暅原理并且有相同体积。对照立体的体积便是圆柱体和圆锥体体积之差,所以成功利用这条有名的方程计算出半球体体积,从而导出球体体积公式。<p style=text-indent:2em;>'''<big>微积分</big>''' <p style=text-indent:2em;> 祖暅原理背后的概念经常出现在微积分中。作为维度的一个例子,因此两条方程式在两个交点间的面积可以利用以下方程获得::实质上表示了函数图形和之间的面积与函数图形下的相同,而后者的交点距离与前者相等。由于现代数学中的积分和-(面)-积的互相关系,而体积可以通过微分计算,使祖暅原理变得更为少用
1,014
次編輯