41,228
次編輯
變更
凝聚态物理学
,创建页面,内容为“{| class="wikitable" align="right" |- | style="background: #008080" align= center| '''<big>凝聚态物理学</big> ''' |- | File:B812c8fcc3cec3fd5891b75fd488d43…”
{| class="wikitable" align="right"
|-
| style="background: #008080" align= center| '''<big>凝聚态物理学</big> '''
|-
|
[[File:B812c8fcc3cec3fd5891b75fd488d43f87942768.jpg|缩略图|居中|[https://i01piccdn.sogoucdn.com/ae413be0808ed686 原图链接][https://pic.sogou.com/pics?ie=utf8&p=40230504&interV=kKIOkrELjbgQmLkElbYTkKIMkrELjbkRmLkElbkTkKIRmLkEk78TkKILkbHjMz%20PLEDmK6IPjf19z%2F19z6RLzO1H1qR7zOMTMkjYKKIPjflBz%20cGwOVFj%20lGmTbxFE4ElKJ6wu981qR7zOM%3D_844253275&query=%E9%AB%98%E7%A3%81%E5%AF%BC%E7%8E%87%E6%9D%90%E6%96%99 来自搜狗的图片]]]
|-
| style="background: #008080" align= center|
|-
| align= light|
|}
'''凝聚态物理学'''(condensed matter physics)是研究凝聚态物质的物理性质与微观结构以及它们之间的关系,即通过研究构成凝聚态物质的电子、离子、原子及分子的运动形态和[[规律]],从而认识其物理性质的学科。一方面,它是固体物理学的向外延拓,使研究对象除固体物质以外,还包括许多液态物质,诸如液氦、熔盐、液态金属,以及[[液晶]]、乳胶与聚合物 等,甚至某些特殊的气态[[物质]],如经玻色-爱因斯坦凝聚的玻色气体和量子简并的费米气体。另一方面,它也引入了新的概念体系,既有利于处理传统固体物理遗留的许多疑难[[问题]],也便于推广应用到一些比常规固体更加复杂的物质。从历史来看,固体物理学创建于20世纪的30—40年代,而凝聚态物理学这一名称最早出现于70年代,到了80—90年代,它逐渐取代了固体物理学作为学科名称,或者将固体物理学理解为凝聚态物理学的同义词。
=='''简介'''==
凝聚态物理学是当今物理学最大也是最重要的分支学科之一。其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用,等等,形成了比固体物理学更深刻更普遍的理论体系。经过半个世纪多的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现是凝聚态物理学的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。凝聚态物理学起源于19世纪固体物理学和低温物理学的发展。19世纪,人们对晶体的认识逐渐深入。1840年法国物理学家A·布拉维导出了三维晶体的所有14种排列方式,即布拉维点阵。1912年,德国物理学家冯·劳厄发现了X射线在晶体上的衍射,开创了固体物理学的新时代,从此,人们可以通过X射线的衍射条纹研究晶体的微观结构。19世纪,英国著名物理学家法拉第在低温下液化了大部分当时已知的气体。1908年,荷兰物理学家H·昂内斯将最后一种难以液化的气体氦气液化,创造了人造低温的新纪录-269 °C(4K),并且发现了金属在低温下的超导现象。超导具有广阔的应用前景,超导的理论和实验研究在20世纪获得了长足进展,临界转变温度最高纪录不断刷新,超导研究已经成为凝聚态物理学中最热门的领域之一。
现今凝聚态物理学面临的主要问题高温超导体的理论模型。
=='''评价'''==
凝聚态物理学的基本任务在于阐明微观结构与物性的关系,因而判断构成凝聚态物质的某些类型微观粒子的集体是否呈现量子特征(波粒二象性)是至关紧要的。电子质量小,常温下明显地呈现量子特征;离子或原子则由于质量较重,只有低温下(约4K)的液氦或极低温下(μK至nK)的碱金属稀薄气体,原子的量子特征才突出地表现出来。这也说明为何低温条件对凝聚态物理学的研究十分重要。微观粒子分为两类:一类是费米子,具有半整数的自旋,服从泡利不相容原理;另一类是玻色子,具有整数的自旋,同一能态容许任意数的粒子占据。这两类粒子的物理行为判然有别。<ref>[https://zhuanlan.zhihu.com/p/171756902 凝聚态物理学]搜狗</ref>
=='''参考文献'''==
|-
| style="background: #008080" align= center| '''<big>凝聚态物理学</big> '''
|-
|
[[File:B812c8fcc3cec3fd5891b75fd488d43f87942768.jpg|缩略图|居中|[https://i01piccdn.sogoucdn.com/ae413be0808ed686 原图链接][https://pic.sogou.com/pics?ie=utf8&p=40230504&interV=kKIOkrELjbgQmLkElbYTkKIMkrELjbkRmLkElbkTkKIRmLkEk78TkKILkbHjMz%20PLEDmK6IPjf19z%2F19z6RLzO1H1qR7zOMTMkjYKKIPjflBz%20cGwOVFj%20lGmTbxFE4ElKJ6wu981qR7zOM%3D_844253275&query=%E9%AB%98%E7%A3%81%E5%AF%BC%E7%8E%87%E6%9D%90%E6%96%99 来自搜狗的图片]]]
|-
| style="background: #008080" align= center|
|-
| align= light|
|}
'''凝聚态物理学'''(condensed matter physics)是研究凝聚态物质的物理性质与微观结构以及它们之间的关系,即通过研究构成凝聚态物质的电子、离子、原子及分子的运动形态和[[规律]],从而认识其物理性质的学科。一方面,它是固体物理学的向外延拓,使研究对象除固体物质以外,还包括许多液态物质,诸如液氦、熔盐、液态金属,以及[[液晶]]、乳胶与聚合物 等,甚至某些特殊的气态[[物质]],如经玻色-爱因斯坦凝聚的玻色气体和量子简并的费米气体。另一方面,它也引入了新的概念体系,既有利于处理传统固体物理遗留的许多疑难[[问题]],也便于推广应用到一些比常规固体更加复杂的物质。从历史来看,固体物理学创建于20世纪的30—40年代,而凝聚态物理学这一名称最早出现于70年代,到了80—90年代,它逐渐取代了固体物理学作为学科名称,或者将固体物理学理解为凝聚态物理学的同义词。
=='''简介'''==
凝聚态物理学是当今物理学最大也是最重要的分支学科之一。其研究层次,从宏观、介观到微观,进一步从微观层次统一认识各种凝聚态物理现象;物质维数从三维到低维和分数维;结构从周期到非周期和准周期,完整到不完整和近完整;外界环境从常规条件到极端条件和多种极端条件交叉作用,等等,形成了比固体物理学更深刻更普遍的理论体系。经过半个世纪多的发展,凝聚态物理学已成为物理学中最重要、最丰富和最活跃的学科,在诸如半导体、磁学、超导体等许多学科领域中的重大成就已在当代高新科学技术领域中起关键性作用,为发展新材料、新器件和新工艺提供了科学基础。前沿研究热点层出不穷,新兴交叉分支学科不断出现是凝聚态物理学的一个重要特点;与生产实践密切联系是它的另一重要特点,许多研究课题经常同时兼有基础研究和开发应用研究的性质,研究成果可望迅速转化为生产力。凝聚态物理学起源于19世纪固体物理学和低温物理学的发展。19世纪,人们对晶体的认识逐渐深入。1840年法国物理学家A·布拉维导出了三维晶体的所有14种排列方式,即布拉维点阵。1912年,德国物理学家冯·劳厄发现了X射线在晶体上的衍射,开创了固体物理学的新时代,从此,人们可以通过X射线的衍射条纹研究晶体的微观结构。19世纪,英国著名物理学家法拉第在低温下液化了大部分当时已知的气体。1908年,荷兰物理学家H·昂内斯将最后一种难以液化的气体氦气液化,创造了人造低温的新纪录-269 °C(4K),并且发现了金属在低温下的超导现象。超导具有广阔的应用前景,超导的理论和实验研究在20世纪获得了长足进展,临界转变温度最高纪录不断刷新,超导研究已经成为凝聚态物理学中最热门的领域之一。
现今凝聚态物理学面临的主要问题高温超导体的理论模型。
=='''评价'''==
凝聚态物理学的基本任务在于阐明微观结构与物性的关系,因而判断构成凝聚态物质的某些类型微观粒子的集体是否呈现量子特征(波粒二象性)是至关紧要的。电子质量小,常温下明显地呈现量子特征;离子或原子则由于质量较重,只有低温下(约4K)的液氦或极低温下(μK至nK)的碱金属稀薄气体,原子的量子特征才突出地表现出来。这也说明为何低温条件对凝聚态物理学的研究十分重要。微观粒子分为两类:一类是费米子,具有半整数的自旋,服从泡利不相容原理;另一类是玻色子,具有整数的自旋,同一能态容许任意数的粒子占据。这两类粒子的物理行为判然有别。<ref>[https://zhuanlan.zhihu.com/p/171756902 凝聚态物理学]搜狗</ref>
=='''参考文献'''==