求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

圆形

增加 9,758 位元組, 2 年前
创建页面,内容为“{| class="wikitable" align="right" |- | style="background: #66CCFF" align= center| '''<big>圆形</big> ''' |- |[[File:|缩略图|居中|[ 原图链接]]] |-…”
{| class="wikitable" align="right"

|-

| style="background: #66CCFF" align= center| '''<big>圆形</big> '''

|-

|[[File:|缩略图|居中|[ 原图链接]]]

|-

| style="background: #66CCFF" align= center|

|-

| align= light|

|}

在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆(Circle)。

在平面内,圆是到定点的距离等于定长的点的集合叫做圆(Circle)

圆有无数条对称轴,对称轴经过圆心

圆具有旋转不变性

'''圆形'''是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。

圆形规定为360°,是古巴比伦人在观察地平线太阳升起的时候,大约每4分钟移动一个位置,一天24小时移动了360个位置,所以规定一个圆内角为360°。这个°,代表太阳。

圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。(当直线成为曲线即为无限点,因此也可以说有绝对意义的圆)<ref>[ ], , --</ref>

==圆的定义==

在同一平面内到定点的距离等于定长的点的集合叫做圆(circle)。这个定点叫做圆的圆心。

圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆。

圆不是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0的正n边形可以近似约等于圆,但并不是圆。

1.连接圆心和圆上的任意一点的线段叫做半径,字母表示为r(radius)

2.通过圆心并且两端都在圆上的线段叫做直径,字母表示为d(diameter)。直径所在的直线是圆的对称轴。

在同一个圆中,圆的直径 d=2r

==弦==

1.连接圆上任意两点的线段叫做弦(chord).在同一个圆内最长的弦是直径。平面内,过圆心的弦是直径,直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。

==弧==

1.圆上任意两点间的部分叫做圆弧,简称弧(arc),以“⌒”表示。

2.大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。

3.在同圆或等圆中,能够互相重合的两条弧叫做等弧。

==角==

1.顶点在圆心上的角叫做圆心角(central angle),圆心角度数等于所对的弧的度数

2. 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半,等于所对的弧的度数的一半

==等圆==

能够重合的两个圆叫做等圆。

==同心圆==

圆心相同的圆叫做同心圆。

==同圆==

半径相同的圆叫做同圆。

==圆周率==

圆的周长与直径的比值叫做圆周率。它是一个无限不循环小数,通常用字母π(读作“派”)表示。

π≈3.141592653589793238462643......计算时通常取近似值3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,不能直接说圆的周长是直径的3.14倍。

==形==

1.由弦和它所对的一段弧围成的图形叫做弓形。

2.直径一样的圆中,圆的一半小于半圆(周长)

3. 由圆心角的两条半径和圆心角所对应的一段弧围成的图形叫做扇形(sector)。

==圆的对称性==

圆是轴对称图形,对称轴在过圆心的直线上,圆有无数条对称轴。圆同时也是中心对称图形,对称中心有且仅有一个,位于圆的圆心。

==表示方式==

圆—⊙ ;半径—r或R(在环形圆中外环半径表示的字母);圆心—O;弧—⌒;直径—d ;

扇形弧长—L ; 周长—C ; 面积—S。

圆的周长:

圆周长的一半 c=πr

半圆的周长 c=πr+2r

圆的周长公式推导(此方面涉及到弧微分)

设圆的参数方程为

圆在一周内周长的积分

代入,可得



==圆的面积公式==

圆的面积计算公式:

把圆分成若干等份,可以拼成一个近似的长方形。长方形的宽相当于圆的半径。

圆锥侧面积

(l为母线长)

==弧长角度公式==

扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)

扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)

圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)

==扇形面积公式==

R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。

也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:

(L为弧长,R为扇形半径)

推导过程:S=πr²×L/2πr=LR/2

(L=│α│·R)

==位置关系==

点和圆位置关系

①P在圆O外,则 PO>r。

②P在圆O上,则 PO=r。

③P在圆O内,则 PO<r

反之亦然。

平面内,点P(x0,y0)与圆(x-a)²+(y-b)²=r²的位置关系判断一般方法是:

①如果(x0-a)²+(y0-b)²<r²,则P在圆内。

②如果(x0-a)²+(y0-b)²=r²,则P在圆上。

③如果(x0-a)²+(y0-b)²>r²,则P在圆外。

直线和圆位置关系

①直线和圆无公共点,称相离。 AB与圆O相离,d>r。

②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d

③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个公共点叫做切点。圆心与切点的连线垂直于切线。AB与⊙O相切,d=r。(d为圆心到直线的距离)

平面内,直线Ax+By+C=0与圆x²+y²+Dx+Ey+F=0的位置关系判断一般方法是:

1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x²+y²+Dx+Ey+F=0,即成为一个关于x的方程

如果b2-4ac>0,则圆与直线有2个公共点,即圆与直线相交。

如果b2-4ac=0,则圆与直线有1个公共点,即圆与直线相切。

如果b2-4ac<0,则圆与直线有无公共点,即圆与直线相离。

2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x²+y²+Dx+Ey+F=0化为(x-a)²+(y-b)²=r²,令y=b,求出此时的两个x值x1、x2,并且规定x12,那么:

当x=-C/A1或x=-C/A>x2时,直线与圆相离;

当x1

圆和圆位置关系

①无公共点,一圆在另一圆之外叫外离,在之内叫内含。

②有公共点的,一圆在另一圆之外叫外切,在之内叫内切。

③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。

设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P<R-r

内切P=R-r;相交R-r<P<R+r

==圆的性质==

⑴圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。

⑵有关圆周角和圆心角的性质和定理

① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。

直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。

即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

⑶有关外接圆和内切圆的性质和定理

①一个三角形有确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;

②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。

④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)

⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。

(5)弦切角的度数等于它所夹的弧的度数的一半。

(6)圆内角的度数等于这个角所对的弧的度数之和的一半。

(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。

(8)周长相等,圆面积比正方形、长方形、三角形的面积大。

垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。

切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

切线的性质:

(1)经过切点垂直于过切点的半径的直线是圆的切线。

(2)经过切点垂直于切线的直线必经过圆心。

(3)圆的切线垂直于经过切点的半径。

== 参考来源 ==

{{reflist}}

[[Category: ]]
26,395
次編輯