求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

變更

前往: 導覽搜尋

藻類生質燃料

增加 324 位元組, 1 年前
無編輯摘要
</small>
|}
'''藻類生質燃料'''或稱 [[ ]] 油,是 [[ 液體 ]][[ 化石燃料 ]] 的替代品,也是常見的 [[ 生物 ]][[ 燃料 ]] 來源(如 [[ 玉米 ]] [[ 甘蔗 ]] )的替代品。大型藻類製成燃料時,富含能量 [[ ]] 的來源,其燃燒時與石化燃料一樣會產生 [[ 二氧化碳 ]] ,但因在生長期間已在自然界吸收了二氧化碳,所以能達至減 [[ ]] 效果。
==簡介==
===生產力所需的營養物質 ===
氮和磷是藻類生產力所需的兩種最重要的 [[ 營養 ]] 物質,但還需要其他營養物質,如[[碳]]和[[二氧化矽]]。所有生物體都需要大量的 [[ ]] [[ 磷酸鹽 ]] 的形式進行新陳代謝。磷(P)、[[鐵]](Fe)、 [[ ]] (Co)、[[鋅]](Zn)、錳(Mn)和鉬(Mo)、[[鎂]](Mg)、 [[ ]] (Ca)、 [[ ]] (Si)和 [[ ]] (S) 濃度每天使用電感耦合等離子體 (ICP) 分析進行測量。在所需的 [[ 營養素 ]] 中,磷是最重要的營養素之一,因為它用於許多代謝過程。在所有這些被測量的元素中,磷的減少最為顯著,在培養過程中減少了84%。這一結果表明, [[ ]](N)、 [[ ]](P) 和 [[ ]](K)等營養素對植物生長很重要,是 [[ 肥料 ]] 的重要組成部分。
==營運成本==
[[美國]]能源部估計,如果藻類燃料取代 [[ 美國 ]] 所有的石油燃料,則需要 15,000 平方英里(39,000 km <sup>2</sup>),僅占美國地圖的 0.42%,或大約是 [[ 緬因州 ]][[ 土地 ]][[ 面積 ]] 的一半。這還不到 2000 年美國玉米收穫面積的1 ⁄ 7。由於資本和運營成本高,藻類每單位質量的成本高於其他第二代生物燃料作物,但據稱每單位面積的燃料產量高出 10 到 100 倍。
== 燃料生產 ==
收穫藻類後,生物質通常通過一系列步驟進行處理,這些步驟可能因物種和所需產品而異;這是一個活躍的研究領域,也是該技術的瓶頸:提取成本高於獲得的成本。解決方案之一是使用濾食器“吃掉”它們。另一種提取藻類的方法是用特定類型的 [[ 真菌 ]] 培養藻類。這會導致藻類的生物絮凝,從而更容易提取。
=== 脫水 ===
通常,藻類被脫水,然後使用 [[ 己烷 ]] 等溶劑從乾燥的材料中提取富含能量的化合物,如 [[ 甘油 ]] 三酯。然後,可以使用標準工業程序將提取的化合物加工成燃料。例如,提取的甘油三酯與 [[ 甲醇 ]] 反應,通過酯交換生成生物 [[ 柴油 ]] 。每個物種的獨特脂肪酸組成會影響所得生物柴油的質量,因此在選擇藻類作為原料時必須考慮到這一點。
=== 水熱液化 ===
另一種稱為水熱液化的替代方法採用連續過程,將收穫的濕藻類置於高 [[ 度|溫]] 和高壓下——350°C (662°F) 和 3,000 磅/平方英寸 (21,000 kPa)。產品包括原油,可通過一種或多種升級 [[ 工藝 ]] 進一步精煉成 [[ 航空 ]] 燃料、 [[ 汽油 ]] 或柴油燃料。測試過程將 50% 到 70% 的藻類碳轉化為燃料。其他輸出包括清潔水、燃料氣和[[氮]]、[[磷]]和[[鉀]]等營養物質。
=== 二氧化碳 ===
冒泡一氧化碳CO通過藻類培養系統可以大大提高 [[ 生產力 ]] 和產量(達到飽和點)。通常,約 1.8 噸CO<sub>2</sub>每生產一噸藻類生物質(幹)將使用,儘管這因藻類種類而異。珀斯郡滲濾液CO的 Glenturret 酒廠CO<sub>2</sub>在 [[ 威士忌 ]][[ 蒸餾 ]] 過程中通過微藻 [[ 生物 ]] 反應器製成。每噸微藻吸收兩噸 [[ 二氧化 碳CO碳]]CO<sub>2</sub>負責該項目的蘇格蘭生物能源公司將微藻作為高價值、富含 [[ 蛋白質 ]] [[ 漁業 ]][[ 食品 ]] 出售。未來,他們將利用藻類殘渣通過 [[ 厭氧 ]] 消化生產可再生能源。
=== 氮 ===
氮是可用於藻類 [[ 生長 ]] 的有價值的底物。各種氮源可用作藻類的營養物,具有不同的容量。就生長的生物量而言,發現 [[ 硝酸鹽 ]] 是優選的 [[ ]] 源。 [[ 尿素 ]] 是一種容易獲得的來源,顯示出可比的結果,使其成為大規模藻類培養中氮源的經濟替代品。儘管與無氮培養基相比生長明顯增加,但已經表明氮水平的改變會影響藻類 [[ 細胞 ]] 內的 [[ 脂質 ]] 含量。在一項研究中[125]氮剝奪 72 小時導致總 [[ 脂肪酸 ]] 含量(以每個細胞為基礎)增加 2.4 倍。與初始培養相比,65% 的總脂肪酸在油體中酯化為甘油三酯,表明藻類細胞利用了脂肪酸的從頭合成。藻類細胞中的脂質含量必須足夠高,同時保持足夠的 [[ 細胞分裂 ]] 時間,因此可以最大化兩者的參數正在研究中。
=== 廢水 ===
一個可能的營養來源是污水、農業或洪氾區徑流處理產生的廢水,這些都是目前的主要污染物和 [[ 健康 ]] 風險。然而,這種廢水不能直接餵食藻類,必須首先通過厭氧消化由 [[ 細菌 ]] 處理。如果廢水在到達藻類之前未進行處理,它將污染反應器中的藻類,並且至少會殺死大部分所需的藻類菌株。
[[ 沼氣 ]] 設施中,有機廢物通常轉化為 [[ 二氧化碳 ]] 、[[甲烷]]和[[有機肥料]]的混合物。從[[沼氣]]池出來的有機肥是液態的,幾乎適合藻類生長,但必須先清洗和消毒。
由於淡水資源的持續枯竭,學者提倡利用廢水和 [[ 海水 ]] 代替 [[ 淡水 ]] 。然而,廢 [[ ]] 中的 [[ 重金屬 ]] 、痕量金屬和其他污染物會降低細胞生物合成產生脂質的能力,並且還會影響細胞機器中的各種其他工作。海水也是如此,但污染物的濃度不同。因此,農業級肥料是營養的首選來源,但重金屬又是一個問題,尤其是對易受這些 [[ 金屬 ]] 影響的藻類菌株。在開放式池塘系統中,使用可以處理高濃度重金屬的藻類菌株可以防止其他生物侵染這些系統。在某些情況下,甚至已經表明,藻類菌株可以在相對較短的時間內從工業廢水中去除 90% 以上的 [[ ]] ][[ ]]
== 影響 ==
=== 對生態環境造成的影響 ===
與基於陸地的生物燃料作物(如[[玉米]]或[[大豆]])相比,由於微藻的產油率高於所有其他油料作物,微藻生產導致的土地足跡要小得多。藻類也可以生長在對普通作物無用且保護價值低的邊緣土地上,並且可以使用對農業或飲用無用的含 [[ ]] 含水層的水。藻類也可以在袋子或浮篩中生長在 [[ 海洋 ]] 表面。因此,微藻可以提供清潔 [[ 能源 ]] ,而對提供充足的 [[ 食物 ]] 和水或保護 [[ 生物多樣性 ]] 幾乎沒有影響。藻類種植也不需要 [[ 殺蟲劑 ]] [[ 除草劑 ]] 的外部補貼,消除了產生相關 [[ 農藥 ]] 廢物流的任何風險。此外,藻類生物燃料的毒性要小得多,並且比石油基燃料更容易降解。
然而,由於任何可燃燃料的易燃性,如果點燃或溢出,可能會造成一些環境危害,如 [[ 火車 ]] 脫軌或管道洩漏中可能發生的那樣。與化石燃料相比,這種危害降低了,因為藻類生物燃料能夠以更局部的方式生產,並且總體毒性較低,但危害仍然存在。因此,在運輸和使用過程中,藻類生物燃料的處理方式應與石油燃料類似,並始終採取足夠的安全措施。
研究表明,用生物燃料等可 [[ 再生能源 ]] 替代 [[ 化石燃料 ]] 具有減少二氧化碳排放的能力CO<sub>2</sub>排放量高達 80%。[基於藻類的系統可以捕獲大約 80% 的CO<sub>2</sub>當有陽光時從發電廠發出的。雖然這個CO2當燃料燃燒時,這些CO會隨後釋放到大氣中CO<sub>2</sub>無論如何都會進入大氣層。減少總二氧化碳的可能性CO<sub>2</sub>因此,排放在於防止二氧化碳的釋放CO<sub>2</sub>來自化石燃料。此外,與 [[ 柴油 ]] [[ 石油 ]] 等燃料相比,甚至與其他生物燃料來源相比,藻類生物燃料的生產和燃燒不會產生任何硫氧化物或一氧化二氮,並且產生的一氧化碳、未燃燒的 [[ 碳氫化合物 ]] 和還原其他有害污染物的排放。由於生物燃料生產的 [[ 陸地 ]][[ 植物 ]] 來源根本不具備滿足當前能源需求的生產能力,因此微藻可能是完全替代化石燃料的唯一選擇之一。
微藻生產還包括使用含鹽廢物或廢二氧化碳的能力CO2流作為能源。這開啟了一種新的戰略,即生產生物燃料與廢水處理相結合,同時能夠生產清潔水作為副產品。當用於微藻生物反應器時,收穫的微藻將捕獲大量有機化合物以及從廢水流中吸收的[[重金屬]]污染物,否則這些污染物將直接排放到地表水和地下水中。此外,這一過程還可以從廢物中回收磷,這是自然界中必不可少但稀缺的元素——據估計,磷的儲量在過去 50 年中已經枯竭。另一種可能性是使用藻類生產系統來清理非點源污染,該系統稱為藻類草皮洗滌器 (ATS)。這已被證明可以降低河流和其他受富營養化影響的大型水體中的氮和磷水平,並且正在建造的系統每天能夠處理多達 1.1 億升水。ATS 還可用於處理點源污染,例如上述廢水,或用於處理牲畜污水。
12,135
次編輯