273,202
次編輯
變更
边
,创建页面,内容为“边或棱是指几何形状中连接顶点的几何结构。在一般常见的几何图形如多边形、多面体和多胞体中,边是连接两个顶点的线段…”
边或棱是指几何形状中连接顶点的几何结构。在一般常见的几何图形如多边形、多面体和多胞体中,边是连接两个顶点的线段,而边长指这线段的长度。而在一些较复杂的空间中的几何结构中,边有可能连接2个以上的顶点,例如复数空间中的复多胞形。在多边形中,边是位于多边形边界上的线段,又可以称为边缘。而在多面体或更高维度的多胞形中,边是面相交的线段。而穿过几何结构内部的线段不能称为边,其称为对角线。
==角的边==
一个角,其中蓝色和红色线段为角的边,在图中的角中,蓝色的边称为始边,红色的边称为终边。
角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边。在有向角中,角的两条边皆有不同的称呼。通常称有向角起始的边为始边、另一条边则称为终边,而始边与终边相同的角称为同界角。
==多边形的边==
在多边形中,边是位于多边形边界上的线段,又可以称为边缘。一般情况下,多边形的边数会与顶点数相等。在一些特殊的多边形中,特定的编会被依照其特性命名,例如在梯形中,一组平形的边通常称为底边,求面积时三角形的与高垂直的边也称为底边,其余两边则称侧边。
==多胞形的边==
多胞形是指多边形、多面体、多胞体等几何结构再任意维度的类比,因此多边形也是一种多胞形。在多边形中,两条边会交会在一个点上,更精确地说在维度为d维的d维凸多胞形中,会有至少d条边交会在1个顶点上,例如前述的多边形是一种二维多胞形,因此每个顶点至少都是2条边的交会点,这个现象称为巴林斯基定理,类似地,在多面体中,每条边都至少是2个二维面的交线,而在四维或更高维多胞体中会有三个或更多个二维面在每个边上相交。
==其他用法==
在高维凸多胞形理论中,维度为d的d维凸多胞形中,其(d-1)维的元素称为维面、(d-2)维的元素称为维脊或维边或维棱、(d-3)维的元素称为维峰。 因此,多边形的边同时也是其维面、三维凸多面体的边同时也是其维脊、四维凸多胞体的边同时也是其维峰。
==角的边==
一个角,其中蓝色和红色线段为角的边,在图中的角中,蓝色的边称为始边,红色的边称为终边。
角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边。在有向角中,角的两条边皆有不同的称呼。通常称有向角起始的边为始边、另一条边则称为终边,而始边与终边相同的角称为同界角。
==多边形的边==
在多边形中,边是位于多边形边界上的线段,又可以称为边缘。一般情况下,多边形的边数会与顶点数相等。在一些特殊的多边形中,特定的编会被依照其特性命名,例如在梯形中,一组平形的边通常称为底边,求面积时三角形的与高垂直的边也称为底边,其余两边则称侧边。
==多胞形的边==
多胞形是指多边形、多面体、多胞体等几何结构再任意维度的类比,因此多边形也是一种多胞形。在多边形中,两条边会交会在一个点上,更精确地说在维度为d维的d维凸多胞形中,会有至少d条边交会在1个顶点上,例如前述的多边形是一种二维多胞形,因此每个顶点至少都是2条边的交会点,这个现象称为巴林斯基定理,类似地,在多面体中,每条边都至少是2个二维面的交线,而在四维或更高维多胞体中会有三个或更多个二维面在每个边上相交。
==其他用法==
在高维凸多胞形理论中,维度为d的d维凸多胞形中,其(d-1)维的元素称为维面、(d-2)维的元素称为维脊或维边或维棱、(d-3)维的元素称为维峰。 因此,多边形的边同时也是其维面、三维凸多面体的边同时也是其维脊、四维凸多胞体的边同时也是其维峰。