代數幾何檢視原始碼討論檢視歷史
代數幾何(英語:algebraic geometry)是數學的一個分支,經典代數幾何研究多項式方程的零點。現代代數幾何將抽象代數,尤其是交換代數,同幾何學的語言和問題結合起來。
代數幾何的基本研究對象為代數簇。代數簇是由空間坐標的若干代數方程的零點集。常見的例子有平面代數曲線,比如直線、圓、橢圓、拋物線、雙曲線、三次曲線(非奇異情形稱作橢圓曲線)、四次曲線(如雙紐線,以及卵形線)、以及一般n次曲線。代數幾何的基本問題涉及對代數簇的分類,比如考慮在雙有理等價意義下的分類,即雙有理幾何,以及模空間問題,等等。
代數幾何在現代數學占中心地位,與多複變函數論[1]、微分幾何、拓撲學和數論等不同領域均有交叉。始於對代數方程組的研究,代數幾何延續解方程未竟之事;與其求出方程實在的解,代數幾何嘗試理解方程組的解的幾何性質。代數幾何的概念和技巧都催生了某些最深奧的數學的分支。
歷史
進入20世紀,代數幾何的研究又衍生出幾個分支:
- 研究代數簇的實點,即實代數幾何。
- 奇點理論的一大部分致力於研究代數簇中的奇異點,及關於奇異點的解消的存在性和方法。
代數簇的上同調理論,如晶體上同調、平展上同調、以及Motive上同調。
- 幾何不變量理論,起始於戴維·芒福德在二十世紀六十年代的研究,其思想起源於大衛·希爾伯特的古典不變量理論。
20世紀以來,代數幾何主流的許多進展都在抽象代數的框架內進行,越發強調代數簇「內蘊的」性質,即那些不取決於代數簇在射影空間的具體嵌入方式的性質,與拓撲學、微分幾何及復幾何等學科的發展相應。抽象代數幾何的一大關鍵成就是格羅滕迪克的概形論;概形論允許人們應用層論研究代數簇,某種意義上與應用層論研究微分流形與解析流形是否相似。概形論延伸了點的概念。在經典代數幾何中,根據希爾伯特零點定理[2],一個仿射代數簇的一點對應於坐標環上的一個極大理想,仿射概形上的子簇則對應於坐標環的素理想。而在概型論中,概型的點集包含了經典情況代數簇的點集,以及所有子簇的信息。這種方法使得經典代數幾何(主要涉及閉點)同時聯繫起了微分幾何、數論等主流分支的問題研究。
視頻
代數幾何 相關視頻
參考文獻
- ↑ 【轉載】多複變函數論,豆瓣,2009-01-23
- ↑ 交換代數第九課:希爾伯特零點定理,嗶哩嗶哩,2020-03-15