王選(合肥工業大學)檢視原始碼討論檢視歷史
王選,男,合肥工業大學土木與水利工程學院講師。
人物履歷
教育背景
2009/09–2013/06,山西大同大學,數學與應用數學,學士
2013/09–2019/03,大連理工大學,計算力學,博士(碩博連讀)
2017/01–2018/01,RMIT University(澳大利亞),土木工程,公派聯合培養博士
工作經歷
2019/04–至 今,合肥工業大學,土木與水利工程學院,講師,碩導
科研項目
[1] 安徽省自然科學基金青年項目,不確定載荷下多相材料應力約束魯棒性優化設計方法研究,2020/07-2022/06,主持;
[2] 合肥工業大學學術新人提升計劃A項目,不確定載荷下內嵌組件的連續體結構優化設計方法,2020/04-2021/12,主持;
[3] 合肥工業大學博士學位人員專項資助基金:多相材料連續體結構應力約束拓撲優化,2019/05-2021/4,主持;
[4] 土木工程結構與材料安徽省重點實驗室開放基金:考慮故障-安全的工程結構優化設計研究,2019/06-2021/6,主持。
學術成果
[1] Wang, X., Long, K., Hoang, V. N., Hu, P. (2018). An explicit optimization model for integrated layout design of planar multi-component systems using moving morphable bars. Computer Methods in Applied Mechanics and Engineering, 342, 46-70.
[2] Wang, X., Liu, H., Kang, Z., Long, K., Meng, Z. (2021). Topology optimization for minimum stress design with embedded movable holes. Computers & Structures, 244, 106455.
[3] Wang, X., Hu, P., Kang, Z. (2020). Layout optimization of continuum structures embedded with movable components and holes simultaneously. Structural and Multidisciplinary Optimization, 61(2), 555-573.
[4] Wang, X., Zhu, X., Hu, P. (2015). Isogeometric finite element method for buckling analysis of generally laminated composite beams with different boundary conditions. International Journal of Mechanical Sciences, 104, 190-199.
[5] Wang, X., Long, K., Meng, Z., Yu, B., Cheng, C. (2020). Explicit multi-material topology optimization embedded with variable-size movable holes using moving morphable bars. Engineering Optimization, 53,1212-1229.
[6] Hoang,V.N., Wang, X., Nguyen-Xuan, H. (2021). A three-dimensional multiscale approach to optimal design of porous structures using adaptive geometric components. Composite Structures, 273, 114296.
[6] Wang, C., Wang, X., Zhang, X., Hu, P. (2017). Assumed stress quasi-conforming technique for static and free vibration analysis of Reissner-Mindlin plates. International Journal for Numerical Methods in Engineering, 112(4), 303-337.
[7] Long, K., Wang, X., Liu, H. (2019). Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming. Structural and Multidisciplinary Optimization, 59(5), 1747–1759.
[8] Long, K., Wang, X., Du, Y. (2019). Robust topology optimization formulation including local failure and load uncertainty using sequential quadratic programming. International Journal of Mechanics and Materials in Design, 15(2), 317-332.
[9] Meng, Z., Pang, Y., Pu, Y., Wang, X.* (2020). New hybrid reliability-based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties. Computer Methods in Applied Mechanics and Engineering, 363, 112886.
[10] Meng, Z., Wu, Y., Wang, X.*, Ren, S., Yu, B. (2021). Robust topology optimization methodology for continuum structures under probabilistic and fuzzy uncertainties. International Journal for Numerical Methods in Engineering, 122(8), 2095-2111.
[11] 王選, 胡平, 祝雪峰, 蓋贇棟. (2016). 考慮結構自重的基於NURBS插值的3D拓撲描述函數法. 力學學報, 48(6), 1437-1445.
[12] 王選, 劉宏亮, 龍凱, 楊迪雄, 胡平. (2018). 基於改進的雙向漸進結構優化法的應力約束拓撲優化. 力學學報, 50(2), 385-394.
[13] 王選, 胡平, 龍凱. (2019). 考慮嵌入移動孔洞的多相材料布局優化. 力學學報, 51(3), 852-862.
[14] 程長征, 卞光耀, 王選, 龍凱等 (2020). 連續纖維增強複合材料結構基頻最大化設計. 力學學報, 52(5),1422-1430.
[15] 龍凱, 谷先廣, 王選. (2017). 基於多相材料的連續體結構動態輕量化設計方法. 航空學報, 38(10), 129-138. [1]