開啟主選單
求真百科
搜尋
檢視 微分中值定理 的原始碼
←
微分中值定理
由於下列原因,您沒有權限進行 編輯此頁面 的動作:
您請求的操作只有這個群組的使用者能使用:
用戶
您可以檢視並複製此頁面的原始碼。
{| class="wikitable" align="right" |- | style="background: #FF2400" align= center| '''<big>微分中值定理</big>''' |- |<center><img src=https://p1.ssl.qhimg.com/t019b70069c47738929.gif width="300"></center> <small>[https://baike.so.com/gallery/list?ghid=first&pic_idx=1&eid=1756518&sid=1857380 来自 网络 的图片]</small> |- |- | align= light| |} '''微分中值定理'''是一系列中值定理总称,是研究函数的有力工具,其中最重要的内容是拉格朗日定理,可以说其他中值定理都是拉格朗日中值定理的特殊情况或推广。微分中值定理反映了导数的局部性与函数的整体性之间的关系,应用十分广泛。 =='''简介'''== 古希腊数学家在[[几何]]研究中,得到如下结论:“过抛物线弓形的顶点的切线必平行于抛物线弓形的底”,这是拉格朗日中值定理的特殊情况。希腊著名数学家阿基米德正是巧妙地利用这一结论,求出抛物线弓形的面积。意大利数学家卡瓦列里(Cavalieri,1598-1647)在《不可分量几何学》(1635年)的卷一中给出了处理平面和立体图形切线的有趣引理,其中引理3基于几何的观点也叙述了同样一个事实:曲线段上必有一点的切线平行于曲线的弦,这是几何形式的微分中值定理,被人们称为卡瓦列里定理。 =='''评价'''== 泰勒公式内容 :若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!·(x-x.)^2,+f'''(x.)/3!·(x-x.)^3+……+f(n)(x.)/n!·(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!·(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 推论:麦克劳林公式 内容: 若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和: f(x)=f(0)+f'(0)x+f''(0)/2!·x^2,+f'''(0)/3!·x^3+……+f(n)(0)/n!·x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!·x^(n+1),这里0<θ<1. 达布定理内容: 若函数f(x)在[a,b]上可导,则f′(x)在[a,b]上可取f′(a)和f′(b)之间任何值. 推广:若f(x),g(x)均在[a,b]上可导,并且在[a,b]上,g′(x)≠0,则f′(x)/g′(x)可以取f′(a)/g′(a)与f′(b)/g′(b)之间任何值。 洛必达法则内容: 设(1)当x→a时,函数f(x)及F(x)都趋于零; (2)在点a的去心邻域内,f'(x)及F'(x)都存在且F'(x)≠0; (3)当x→a时lim f'(x)/F'(x)存在(或为无穷大),那么 x→a时 lim f(x)/F(x)=lim f'(x)/F'(x)。 又设 (1)当x→∞时,函数f(x)及F(x)都趋于∞; (2)当|x|>N时f'(x)及F'(x)都存在,且F'(x)≠0; (3)当x→∞时lim f'(x)/F'(x)存在(或为无穷大),那么 x→∞时 lim f(x)/F(x)=lim f'(x)/F'(x)。<ref>[https://baijiahao.baidu.com/s?id=1717366308492986297&wfr=spider&for=pc 微分中值定理]搜狗</ref> =='''参考文献'''== [[Category:316 幾何]]
返回「
微分中值定理
」頁面