打开主菜单

求真百科

中心极限定理

中心极限定理,是概率论中讨论随机变量序列部分和分布渐近于正态分布的一类定理。这组定理是数理统计学误差分析的理论基础,指出了大量随机变量积累分布函数逐点收敛到正态分布的积累分布函数的条件。[1]

中心极限定理

它是概率论中最重要的一类定理,有广泛的实际应用背景。在自然界与生产中,一些现象受到许多相互独立的随机因素的影响,如果每个因素所产生的影响都很微小时,总的影响可以看作是服从正态分布的。中心极限定理就是从数学上证明了这一现象 。[2]

最早 的中心极限定理是讨论n重伯努利试验中,事件A出现的次数渐近于正态分布的问题。1716年前后,A.棣莫弗对n重伯努利试验中每次试验事件A出现的概率为1/2的情况进行了讨论,随后,P.-S.拉普拉斯和A.M.李亚普诺夫等进行了推广和改进。

自P.莱维在1919~1925年系统地建立了特征函数理论起,中心极限定理的研究得到了很快的发展,先后产生了普遍极限定理和局部极限定理等。极限定理是概率论的重要内容,也是数理统计学的基石之一,其理论成果也比较完美。长期以来,对于极限定理的研究所形成的概率论分析方法,影响着概率论的发展。同时新的极限理论问题也在实际中不断产生。

目录

简介

中心极限定理是研究独立随机变量和的极限分布为正态分布的问题。

规范和的定义

设随机变量序列X1,X2,、、、Xn,、、、相互独立,均具有相同的数学期望与方差,且E(Xi)= Ui,D(Xi)=Ri^2>0,i=1,2,、、、,令:

Yn=X1+X2+、、、+Xn

Zn=〔Yn-E(Yn)〕/√D(Yn)=∑(Xi-Ui)/√∑Ri^2 (i=1,2、、、、n)

则称随机变量Zn为随机变量序列X1,X2,、、、,Xn的规范和。

中心极限定理:设从均值为μ、方差为σ^2;(有限)的任意一个总体中抽取样本量为n的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ^2/n 的正态分布。

常用定理

列维定理

林德伯格-列维(Lindburg-Levy)定理,即独立同分布随机变量序列的中心极限定理。它表明,独立同分布、且数学期望和方差有限的随机变量序列的标准化和以标准正态分布为极限。

设随机变量X1,X2,......Xn,......相互独立,服从同一分布,且具有数学期望和方差:E(Xk)=μ,D(Xk)=σ^2>0(k=1,2....),则随机变量之和的标准化变量的分布函数Fn(x)对于任意x满足limFn(x)=Φ(x),n→∞ 其中Φ(x)是标准正态分布的分布函数。

拉普拉斯定理

棣莫佛-拉普拉斯(de Movire - Laplace)定理,即服从二项分布的随机变量序列的中心极限定理。它指出,参数为n, p的二项分布以np为均值、np(1-p)为方差的正态分布为极限。

历史

中心极限定理有着有趣的历史。这个定理的第一版被法国数学家棣莫弗发现,他在1733年发表的卓越论文中使用正态分布去估计大量抛掷硬币出现正面次数的分布。这个超越时代的成果险些被历史遗忘,所幸著名法国数学家拉普拉斯在1812年发表的巨著Théorie Analytique des Probabilités中拯救了这个默默无名的理论.

拉普拉斯扩展了棣莫弗的理论,指出二项分布可用正态分布逼近。但同棣莫弗一样,拉普拉斯的发现在当时并未引起很大反响。直到十九世纪末中心极限定理的重要性才被世人所知。1901年,俄国数学家里雅普诺夫用更普通的随机变量定义中心极限定理并在数学上进行了精确的证明。如今,中心极限定理被认为是(非正式地)概率论中的首席定理。

參考來源