平均数
平均数,统计学术语,是表示一组数据集中趋势的量数,是指在一组数据中所有数据之和再除以这组数据的个数。它是反映数据集中趋势的一项指标。解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数。[1]
在统计工作中,平均数(均值)和标准差是描述数据资料集中趋势和离散程度的两个最重要的测度值。
目录
定义
平均数是统计学中最常用的统计量,用来表明资料中各观测值相对集中较多的中心位置。在畜牧业、水产业生产实践和科学研究中,平均数被广泛用来描述或比较各种技术措施的效果、畜禽某些数量性状的指标等等。 统计平均数是用于反映现象总体的一般水平,或分布的集中趋势。数值平均数是总体标志总量对比总体单位数而计算的。 平均数是统计中的一个重要概念。小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中位置的一个统计量。既可以用它来反映一组数据的一般情况、和平均水平,也可以用它进行不同组数据的比较,以看出组与组之间的差别。 用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均速度、平均身高、平均产量、平均成绩等等。
类型
算术平均数 arithmetic mean 算术平均数是指在一组数据中所有数据之和再除以数据的个数。它是反映数据集中趋势的一项指标。 把n个数的总和除以n,所得的商叫做这n个数的算术平均数。 公式: 几何平均数 geometric mean n个观察值连乘积的n次方根就是几何平均数。根据资料的条件不同,几何平均数分为加权和不加权之分。 公式: 调和平均数 harmonic mean 调和平均数是平均数的一种。但统计调和平均数,与数学调和平均数不同。在数学中调和平均数与算术平均数都是独立的自成体系的。计算结果两者不相同且前者恒小于后者。 因而数学调和平均数定义为:数值倒数的平均数的倒数。但统计加权调和平均数则与之不同,它是加权算术平均数的变形,附属于算术平均数,不能单独成立体系。且计算结果与加权算术平均数完全相等。 主要是用来解决在无法掌握总体单位数(频数)的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据方法。 公式: 加权平均数 weighted average 加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,若 n个数中,x1出现f1次,x2出现f2次,…,xk出现fk次,那么 叫做x1、x2、…、xk的加权平均数。f1、f2、…、fk是x1、x2、…、xk的权。 公式: ,其中 。f1、f2、…、fk叫做权(weight)。 平均数是加权平均数的一种特殊情况,即各项的权相等时,加权平均数就是算术平均数。 平方平均数 平方平均数是n个数据的平方的算术平均数的算术平方根。 公式: 指数平均数 指标概述 指数平均数[EXPMA],其构造原理是对股票收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来的变动趋势。 EXPMA指标是一种趋向类指标,与平滑异同移动平均线[MACD]、平行线差指标[DMA]相比,EXPMA指标由于其计算公式中着重考虑了价格当天 [当期]行情得权重,因此在使用中可克服其他指标信号对于价格走势得滞后性。同时也在一定程度中消除了DMA指标在某些时候对于价格走势所产生得信号提前性,是一个非常有效得分析指标。 中位数 中位数(median)是刻划平均水平的统计量,设是来自总体的样本,将其从小到大排序为则中位数定义为: n为奇数时, n为偶数时,