碳星
碳星是大氣層內的碳比氧多,類似紅巨星[1] (偶爾是紅矮星) 的晚期星。這兩種元素在恆星大氣的上層結合,形成一氧化碳,消耗掉大氣中所有的氧,只留下自由的碳原子和其他的碳結合,使得恆星充滿了像「煤灰」的大氣層,而觀測人員看見的則是醒目的紅色。通常碳星是一些溫度只有2500-3500K的紅巨星,但碳星並不是僅僅只有紅色恆星組成,一些AGB後期逐漸向藍色端演化的恆星也可以是碳星,比如北冕座R,這個恆星的表面溫度就達約6500K.
碳星的質量不高,但這是由於碳星通過恆星風損失了大量物質的關係。碳星的前身星通常是比太陽重數倍的中大型恆星。碳星已經演化到了恆星的末期階段,經過了這個階段它將逐漸拋出自己的全部殼層,向着白矮星演化。
在光譜上,這類恆星的特徵非常明顯,因此早在1860年就被安吉洛·西奇在早期的天文分光學上標示出來。在一般的恆星 (像太陽的恆星) ,大氣中的氧含量都比碳多。著名的碳星有獵犬座Y和天兔座R(欣德的紅星)。
目錄
物理機制
有多種的天文物理機制可以解釋碳星。將之區分為傳統碳星和另一種非傳統碳星,而後者的質量較低。
在傳統碳星,碳的豐盈度來自氦融合產生的,特別是恆星內部的3氦過程,這是當恆星演化到主序星曆程的尾聲,抵達漸近巨星分支 (AGB)時的核反應。這些融合的產生的碳和其他的產物,都經由對流的作用被送達恆星的表面。通常這些AGB的碳星還有一層氫殼進行氫的融合,但只能存在1萬至10萬年的歲月,恆星的殼層就轉而進行氦融合,而氫的融合就會突然的結束。在這個階段,恆星的亮度會增加,同時物質(主要是碳)從內部向外移動。因為光度上升、恆星膨脹,因此氦融合會突然停止,而氫殼層的融合又再度開始。當氦殼閃光(參考氦閃)進行的階段,因為許多氦殼閃光的轟擊會造成質量的重大損失,AGB星將會轉變成炙熱的白矮星,同時它大氣層中的物質成為行星狀星雲。
非傳統碳星被認為是雙星,且其中一顆被觀察到是巨星 (偶爾會是紅矮星),另一顆是白矮星[2]。觀察到的是一顆擁有豐富碳的巨星,當它還是主序星時就從伴星獲得物質(這顆伴星是白矮星),且後者依然也是碳星。
對這個階段恆星演化的認識相對來說是相當簡略的,而且多數這一類恆星的結果都是白矮星。我們看這種系統相對來說的在質量傳遞上花了相當長的時間,鋇星,它們的光譜呈現出強烈的鋇和碳分子的特徵,也被認為是在這種場景之下生成的(S-過程元素)。有時,將這種經由質量傳輸獲得額外碳的碳星被稱為「外因」碳星,以與來自AGB,由內部產生碳的「內因」碳星有所區別。在發現它們是聯星之前,這些都是難題,因為許多外因碳星不僅不夠亮,而且溫度也太低,因此不能自行產生碳。
其他令人難以信服的機制,像是碳氮氧循環的失衡和核心氦閃也曾被認為是大氣層中含碳量較少的碳星用來充實碳含量的機制。
視頻
碳星 相關視頻
參考文獻
- ↑ 紅巨星,最火爆的巨星,外星探索,2015-11-23
- ↑ 白矮星是什麼樣的存在?停止核聚變的晚年恆星,探秘志,2019-6-22