置信区间
置信区间是全国科学技术名词审定委员会审定、公布的一个科技名词。
语言文字是一个民族文化的结晶。这个民族[1]过去的文化靠着它来流传,未来的文化也仗着它来推进,从大约是在公元前14世纪,殷商后期的“甲骨文”被认为是“汉字”的第一种形式[2],西周后期,汉字发展演变为大篆,后秦始皇统一中国,中国文字才逐渐走上了发展的道路,直至今天。
目录
名词解释
置信区间是指由样本统计量所构造的总体参数的估计区间。在统计学中,一个概率样本的置信区间(Confidence interval)是对这个样本的某个总体参数的区间估计。置信区间展现的是这个参数的真实值有一定概率落在测量结果的周围的程度,其给出的是被测量参数的测量值的可信程度,即前面所要求的“一个概率”。
理论描述
置信区间是一种常用的区间估计方法,所谓置信区间就是分别以统计量的置信上限和置信下限为上下界构成的区间 [2] 。对于一组给定的样本数据,其平均值为μ,标准偏差为σ,则其整体数据的平均值的100(1-α)%置信区间为(μ-Ζα/2σ , μ+Ζα/2σ) ,其中α为非置信水平在正态分布内的覆盖面积 ,Ζα/2即为对应的标准分数。
置信区间的计算公式取决于所用到的统计量。置信区间是在预先确定好的显著性水平下计算出来的,显著性水平通常称为α(希腊字母alpha),如前所述,绝大多数情况会将α设为0.05。置信度为(1-α),或者100×(1-α)%。于是,如果α=0.05,那么置信度则是0.95或95%,后一种表示方式更为常用 [2] 。置信区间的常用计算方法如下:
Pr(c1<=μ<=c2)=1-α
其中:α是显著性水平(例:0.05或0.10);
Pr表示概率,是单词probability的缩写;
100%*(1-α)或(1-α)或指置信水平(例如:95%或0.95);
表达方式:interval(c1,c2) - 置信区间。
求解步骤
第一步:求一个样本的均值
第二步:计算出抽样误差。经过实践,通常认为调查:100个样本的抽样误差为±10%;500个样本的抽样误差为±5%;1200个样本时的抽样误差为±3%。
第三步:用第一步求出的“样本均值”加、减第二步计算的“抽样误差”,得出置信区间的两个端点。
参考文献
- ↑ 中国专门创制文字的民族:千人从辽东迁徙西北,雄霸三百年,搜狐,2022-08-13
- ↑ 见证殷商历史 走进中国文字之源,搜狐,2020-01-20