錳礦
錳礦,是一種非常重要的戰略礦產資源,尤其是富錳礦和優質錳礦資源,已經被中國列入到緊缺的礦種。截至2010年底,我國錳礦查明資源儲量89234.32萬噸,其中基礎儲量19515.64萬t,資源量69718.68萬t。2010年我國錳礦石新增查明資源儲量2376.4萬t,近幾年通過貴州錳礦、廣西錳礦整裝勘查新增資源量預計2億t。我國錳礦資源分布不平衡,截至2010年底,23個省市均查明有錳礦,主要分布在南方地區。 [1]在現代工業中,錳及其化合物應用於國民經濟的各個領域。其中鋼鐵工業是最重要的領域,用錳量占90%~95%,主要作為煉鐵和煉鋼過程中的 脫氧劑 和 脫硫劑 ,以及用來製造合金。其餘10%~5%的錳用於其他工業領域,如化學工業(製造各種含錳鹽類)、輕工業(用於電池、火柴、印漆、制皂等)、建材工業(玻璃和陶瓷的着色劑和褪色劑)、 國防工業 、電子工業,以及 環境保護 和農牧業,等等。[1]
目錄
簡介
礦物原料錳是元素周期表中第四周期的第ⅦB族元素。在自然界中錳有Ⅱ、Ⅲ、Ⅳ及Ⅶ價態,其中以Ⅱ和Ⅳ價態最為常見。錳在空氣中非常容易氧化。在加熱條件下,粉狀的錳與氯、溴、磷、硫、硅及碳元素都可以化合。錳在地球岩石圈中以及硅酸鹽相的隕石中表現有強烈的親石性質,但在岩石圈上部則有強烈的親氧性質,錳與鐵在岩石圈中以及隕石中雖有許多相似的化學性質,但錳並不親鐵。在自然界中已知的含錳礦物約有150多種,分別屬氧化物類、碳酸鹽類、硅酸鹽類、硫化物類、硼酸鹽類、鎢酸鹽類、磷酸鹽類等。但含錳量較高的礦物則不多。現就幾種常見的錳礦物敘述如下。(1)軟錳礦四方晶系,晶體呈細柱狀或針狀,通常呈塊狀、粉末狀集合體。顏色和條痕均為黑色。光澤和硬度視其結晶粗細和形態而異,結晶好者呈半金屬光澤,硬度較高,而隱晶質塊體和粉末狀者,光澤暗淡,硬度低,極易污手。比重在5左右。軟錳礦主要由沉積作用形成,為沉積錳礦的主要成分之一。在錳礦床的氧化帶部分,所有原生低價錳礦物也可氧化成軟錳礦。軟錳礦在錳礦石中是很常見的礦物,是煉錳的重要礦物原料。(2)硬錳礦 單斜晶系,晶體少見,通常呈鍾乳狀、腎狀和葡萄狀集合體,亦有呈緻密塊狀和樹枝狀。顏色和條痕均為黑色。半金屬光澤。硬度4~6,比重4.4~4.7。硬錳礦主要是外生成因,見於錳礦床的氧化帶和沉積錳礦床中,亦是錳礦石中很常見的錳礦物,是煉錳的重要礦物原料。(3)水錳礦單斜晶系,晶體呈柱狀,柱面具縱紋。在某些含錳熱液礦脈的晶洞中常呈晶簇產出,在沉積錳礦床中多呈隱晶塊體,或呈鮞狀、鍾乳狀集合體等。礦物顏色為黑色,條痕呈褐色。半金屬光澤。硬度3~4,比重4.2~4.3。水錳礦既見於內生成因的某些熱液礦床,也見於外生成因的沉積錳礦床,是煉錳的礦物原料之一。(4)黑錳礦 四方晶系,晶體呈四方雙錐,通常為粒狀集合體。顏色為黑色,條痕呈棕橙或紅褐。半金屬光澤。硬度5.5,比重4.84。黑錳礦由內生作用或變質作用而形成,見於某些接觸交代礦床、熱液礦床和沉積變質錳礦床中,與褐錳礦等共生,亦是煉錳的礦物原料之一。(5)褐錳礦 四方晶系,晶體呈雙錐狀,也呈粒狀和塊狀集合體產出。礦物呈黑色,條痕為褐黑色。半金屬光澤。硬度6,比重4.7~5.0。其他特徵與黑錳礦相同。(6)菱錳礦 三方晶系,晶體呈菱面體,通常為粒狀、塊狀或結核狀。礦物呈玫瑰色,容易氧化而轉變成褐黑色。玻璃光澤。硬度3.5~4.5,比重3.6~3.7。由內生作用形成的菱錳礦多見於某些熱液礦床和接觸交代礦床;由外生作用形成的菱錳礦大量分布於沉積錳礦床中。菱錳礦是煉錳的重要礦物原料。(7)硫錳礦等軸晶系,常見單形有立方體、八面體、菱形十二面體等,集合體為粒狀或塊狀。顏色鋼灰至鐵黑色,風化後變為褐色,條痕呈暗綠色。半金屬光澤。硬度3.5~4,比重3.9~4.1。硫錳礦大量在沉積變質錳礦床中,是煉錳的礦物原料之一。經濟指標錳礦產品包括冶金錳礦、碳酸錳礦粉、化工用二氧化錳礦粉和電池用二氧化錳礦粉等。使用錳礦產品的冶金部門、輕工部門和化工部門根據不同的用途對錳礦產品有不同的質量要求。(一)冶金工業對錳礦石的質量要求用於煉鋼生鐵、含錳生鐵、鏡鐵的礦石,鐵含量不受限制,礦石中錳和鐵的總含量最好能達到40%~50%。在冶煉各種牌號的錳系合金中,對礦石的含錳量和錳鐵比值有一定的要求。冶煉中、低碳錳鐵,礦石含錳量36%~40%,錳鐵比6~8.5,磷錳比0.002~0.0036;冶煉碳素錳鐵,礦石含錳量33%~40%,錳鐵比3.8~7.8,磷錳比0.002~0.005;冶煉錳硅合金,礦石含錳量29%~35%,錳鐵比3.3~7.5,磷錳比0.0016~0.0048;高爐錳鐵,礦石含錳量30%,錳鐵比2~7,磷錳比0.005。(二)化工及輕工部門對錳礦石的質量要求化學工業上主要用錳礦石製取二氧化錳、硫酸錳、高錳酸鉀,其次用於製取碳酸錳、硝酸錳和氯化錳等。化工級二氧化錳礦粉要求MnO2含量大於50%,制硫酸錳時,Fe≤3%、Al2O3≤3%、CaO≤0.5%、MgO≤0.1%;制高錳酸鉀時,Fe≤5%、SiO2≤5%、Al2O3≤4%。天然二氧化錳是製造乾電池的原料,要求MnO2含量越高越好。對Ni、Cu、CO、Pb等有害元素一般廠定標準為:Cu<0.01%、Ni<0.03%、Co<0.02%、Pb<0.02%。礦粉的粒度要小於0.12mm。礦業簡史錳礦物的利用歷史十分悠久,據文獻記載,世界上利用錳礦物最早的國家有埃及、古羅馬、印度和中國。我國利用錳礦物的歷史可追溯到距今約4500~7000年前後新石器時代的仰韶文化(彩陶文化)時期。由於軟錳礦呈土狀,它的顏色呈黑色,極易染手,在古人看來,這是一種奇妙的陶器着色顏料。可是錳元素的發現卻比較晚,到1774年才由瑞典礦物學家甘恩(J。G.Gahn)從軟錳礦中還原出了金屬錳。錳在鋼鐵工業上的應用是各國冶金學家幾十年不懈努力的結果。1875年以後,歐洲各國開始用高爐生產含錳15%~30%的鏡鐵和含錳達80%的錳鐵。1890年用電爐生產錳鐵,1898年用鋁熱法生產金屬錳,並發展了電爐脫硅精煉法生產低碳錳鐵。1939年開始用電解法生產金屬錳。最早開採的錳礦山是美國田納西州惠特福爾德(Whitifeld)錳礦,始采於1837年,到1884年錳礦石年產量已達4萬t。印度也是開採錳礦較早的國家之一,始采於1892年。第一次世界大戰前,印度出口錳礦石一直居世界首位。1928年以後其地位被原蘇聯所取代。從本世紀20年代末原蘇聯的錳礦石產量一直居世界領先地位。此外,開採錳礦石比較早的還有巴西、加納、澳大利亞、南非和加蓬等國。我國錳礦的地質找礦工作開始得也比較早,據所見資料,從1886年開始,並於1890年首先在湖北興國州(今陽新)發現錳礦,隨後於1897年和1907年又先後在湖南發現安仁、攸縣和常寧、耒陽錳礦;1910年發現廣西防城大直、欽州黃屋屯錳礦;1913年和1918年,前後發現了湖南湘潭上五都錳礦(1937年改稱為湘潭錳礦)和廣西木圭、江西樂華錳礦。我國老一輩地質工作者,如朱庭祜、王曉青、田奇玲王雋、李殿臣、李四光等等對湖南、廣東、廣西、江蘇、江西等地做了大量錳礦地質調查,初步了解了我國一些錳礦產地及其錳礦石質量,探討了錳礦床的成因。大規模的錳礦地質勘查工作是在新中國成立以後。從1950年廣西工業廳對桂平木圭錳礦、華東地測處對南京棲霞錳礦、西南工業廳對貴州遵義錳礦進行勘查開始,經過近50年廣大地質工作者的努力,到1996年底,全國錳礦地質勘查投入約6.8億元,機械岩心鑽探工作量約190多萬米,累計探明錳礦石6.48億t。我國最早開採的錳礦山是湖北陽新錳礦,始采於1890年,後因質量不佳,不久即行停采。陽新錳礦停采後,漢冶萍煤鐵廠礦公司為了解決錳礦原料,於1908年在湖南常寧曲潭設常耒錳礦採運局,開採常寧—耒陽一帶錳礦。1913年在湖南湘潭上五都發現錳礦後,1914年即由新組建的裕?礦業公司負責開採,到1917年已初具規模,日產錳礦石百餘噸,最高年產達3萬t,僅1916~1927年的12年間,運銷日本八幡制鐵所的錳礦石就達14.3萬t(礦石品位不低於45%)。據查閱資料表明,1949年以前全國曾開採過錳礦的地區有:湖北、湖南、廣西、廣東、江蘇、江西、福建、貴州、河北和遼寧。據不完全統計,從1912年到1945年的33年間,我國共開採錳礦石140萬t,年均產量4.2萬t,最高年產7.43萬t(1927年),主要集中於渝、黔、桂、湘、贛、遼、粵、蘇8個省(區),合計135.8萬t,約占全國總產量的96.8%,其中又以桂、湘兩地為最多,占全國總產量的65.4%。2015年,貴州省地礦局103地質大隊在銅仁市松桃苗族自治縣新發現了全隱伏的高地、普覺錳礦(整合)、桃子坪三個超大型錳礦床,其中普覺錳礦(整合)超大型錳礦床新探明錳礦資源量1.92億噸,堪稱亞洲第一。選礦方法我國錳礦絕大多數屬於貧礦,必須進行選礦處理。但由於多數錳礦石屬細粒或微細粒嵌布,並有相當數量的高磷礦、高鐵礦和共(伴)生有益金屬,因此給選礦加工帶來很大難度。我國常用的錳礦選礦方法為機械選(包括洗礦、篩分、重選、強磁選和浮選),以及火法富集、化學選礦法等。1、洗礦和篩分洗礦是利用水力沖洗或附加機械擦洗使礦石與泥質分離。常用設備有洗礦篩、圓筒洗礦機和槽式洗礦機。洗礦作業常與篩分伴隨,如在振動篩上直接沖水清洗或將洗礦機獲得的礦砂(淨礦)送振動篩篩分。篩分可作為獨立作業,分出不同粒度和品位的產品供給不同用途使用。2、重選重選只用於選別結構簡單、嵌布粒度較粗的錳礦石,特別適用於密度較大的氧化錳礦石。常用方法有重介質選礦、跳汰選礦和搖床選礦。我國處理氧化錳礦的工藝流程,一般是將礦石破碎至6~0mm或10~0mm,然後進行分組,粗級別的進行跳汰,細級別的送搖床選。設備多為哈茲式往復型跳汰機和6-S型搖床。3、強磁選錳礦物屬弱磁性礦物〔比磁化係數X=10×10-6~600×10-6cm3/g〕,在磁場強度Ho=800-1600kA/m(10000~20000oe)的強磁場磁選機中可以得到回收,一般能提高錳品位4%~10%。由於磁選的操作簡單,易於控制,適應性強,可用於各種錳礦石選別,錳礦選礦中占主導地位。各種新型的粗、中、細粒強磁機陸續研製成功。國內錳礦應用最普遍的是中粒強磁選機,粗粒和細粒強磁選機也逐漸得到應用,微細粒強磁選機尚處於試驗階段。4、重-磁選國內已新建和改建成的重-磁選廠有福建連城,廣西龍頭、靖西和下雷等錳礦。如連城錳礦重-磁選廠,主要處理淋濾型氧化錳礦石,採用AM-30型跳汰機處理30~3mm的洗淨礦,可獲得含錳40%以上的優質錳精礦,再經手選除雜後,可作為電池錳粉原料。跳汰尾礦和小於3mm洗淨礦徑磨至小於1m後,用強磁選機選別,錳精礦品位要提高24%~25%,達到36%~40%。5、強磁-浮選採用強磁-浮選工藝僅有遵義錳礦。該礦是以碳酸錳礦為主的低錳、低磷、高鐵錳礦。據工業試驗,磨礦流程採用棒磨-球磨機階段磨礦,設備規模均為φ2100mm×3000mm濕式磨礦機。強磁選採用shp-2000型強磁機,浮選機主要用CHF型充氣式浮選機。經過多年生產的考驗,性能良好,很適合於遵義錳選礦應用。強磁-浮選工藝流程試驗成功並在生產中得到應用,標誌着我國錳礦的深選已經向前邁進了一大步。6、火法富集錳礦石的火法富集,是處理高磷、高鐵難選貧錳礦石一種分選方法,一般稱為富錳渣法。其實質是利用錳、磷、鐵的還原溫度不同,在高爐或電爐中控制其溫度進行選擇性分離錳、磷、鐵的一種高溫分選方法。我國採用火法富集已有近40年的歷史,1959年湖南邵陽資江鐵廠在9.4m3小高爐上進行試驗,並獲得初步結果。隨後,1962年上海鐵合金廠和石景山鋼鐵廠分別在高爐冶煉出富錳渣。1975年湖南瑪瑙山錳礦高爐不但煉出富錳渣,同時還在爐底回收了鉛、銀和生鐵(俗稱半鋼),為綜合利用提供依據。進入80年代以後,富錳渣生產得到迅速發展,先後在湖南、湖北、廣東、廣西、江西、遼寧、吉林等地都發展了富錳渣生產。火法富集工藝簡單、生產穩定,能有效地將礦石中的鐵、磷分離出去,而獲得富錳、低鐵、低磷富錳渣,這種富錳渣一般含Mn35%~45%,Mn/Fe12~38,P/Mn<0.002,是一種優質錳系合金原料,同時也是一般天然富錳礦很難同時達到上述3個指標的人造富礦。因此,火法富集對於我國高磷高鐵低錳難選礦而言,是很有前途的一種選礦方法。7、化學選錳法錳的化學選礦很多,我國進行了大量研究工作,其中試驗較多,較有發展前途的是:連二硫酸鹽法、黑錳礦法和細菌浸錳法。尚未付諸工業生產。
工藝方法
1.洗礦和篩分2.重選3.強磁選4.重-磁選5.強磁-浮選6.火法富集7.化學選錳法