開啟主選單

求真百科

變更

祖暅

增加 4 位元組, 6 年前
無編輯摘要
== 祖暅原理 ==
'''<big>简介</big>'''
<p style=text-indent:2em;>'''<big> [[ 祖暅 ]] 原理也就是“等积原理”</big>'''
<p style=text-indent:2em;>它是由我国南北朝杰出的数学家、祖冲之的儿子祖暅首先提出来的。祖暅原理的内容是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等。
<p style=text-indent:2em;>等积原理的发现起源于《九章算术》中的答案是错误的。他提出的难方法是取每边为1寸的正方体棋子八枚,拼成一个边长为2寸的正方体,在正方体内画内切圆柱体,再在横向画一个同样的内切[[圆柱体 ]]。这样两个圆柱所包含的立体共同部分像两把上下对称的伞,刘徽将其取名为“牟合方盖”。(古时人称伞为“盖”,“牟”同侔,意即相合。)根据计算得出球体积是牟合方盖体的体积的四分之三,可是圆柱体又比牟合方盖大,但是《九章算术》中得出球的体积是圆柱体体积的四分之三,显然《九章算术》中的球体积计算公式是错误的。刘徽认为只要求出牟合方盖的体积,就可以求出球的体积。可怎么也找不出求导牟合方盖体积的途径。 200多年后,祖暅出现了,他推导出了著名的“[[祖暅原理 ]]”,根据这一原理就可以求出牟合方盖的体积,然后再导出球的体积。这一原理主要应用于计算一些复杂几何体的体积上面。在西方,直到17世纪,才由意大利数学家卡发雷利发现。于1635年出版的《连续不可分几何》中,提出了等积原理,所以西方人把它称之为卡发雷利原理其实,他的发现要比我国的祖暅晚1100多年。
1,014
次編輯