圆形
圆形 |
中文名;圆形 外文名;Round 读音;Yuán xíng 释义;在数学学科之中是表示从定点(圆心) 等距离到任一点的平面曲线。 |
在一个平面内,围绕一个点并以一定长度为距离旋转一周所形成的封闭曲线叫做圆(Circle)。
在平面内,圆是到定点的距离等于定长的点的集合叫做圆(Circle)
圆有无数条对称轴,对称轴经过圆心
圆具有旋转不变性
圆形是一种圆锥曲线,由平行于圆锥底面的平面截圆锥得到。
圆形规定为360°,是古巴比伦人在观察地平线太阳升起的时候,大约每4分钟移动一个位置,一天24小时移动了360个位置,所以规定一个圆内角为360°。这个°,代表太阳。
圆是一种几何图形。根据定义,通常用圆规来画圆。 同圆内圆的直径、半径的长度永远相同,圆有无数条半径和无数条直径。圆是轴对称、中心对称图形。对称轴是直径所在的直线。 同时,圆又是“正无限多边形”,而“无限”只是一个概念。圆可以看成由无数个无限小的点组成的正多边形,当多边形的边数越多时,其形状、周长、面积就都越接近于圆。所以,世界上没有真正的圆,圆实际上只是一种概念性的图形。(当直线成为曲线即为无限点,因此也可以说有绝对意义的圆)[1]
目录
圆的定义
在同一平面内到定点的距离等于定长的点的集合叫做圆(circle)。这个定点叫做圆的圆心。
圆形一周的长度,就是圆的周长。能够重合的两个圆叫等圆。
圆不是一个正n边形(n为无限大的正整数),边长无限接近0但永远无法等于0的正n边形可以近似约等于圆,但并不是圆。
1.连接圆心和圆上的任意一点的线段叫做半径,字母表示为r(radius)
2.通过圆心并且两端都在圆上的线段叫做直径,字母表示为d(diameter)。直径所在的直线是圆的对称轴。
在同一个圆中,圆的直径 d=2r
弦
1.连接圆上任意两点的线段叫做弦(chord).在同一个圆内最长的弦是直径。平面内,过圆心的弦是直径,直径所在的直线是圆的对称轴,因此,圆的对称轴有无数条。
弧
1.圆上任意两点间的部分叫做圆弧,简称弧(arc),以“⌒”表示。
2.大于半圆的弧称为优弧,小于半圆的弧称为劣弧,所以半圆既不是优弧,也不是劣弧。优弧一般用三个字母表示,劣弧一般用两个字母表示。优弧是所对圆心角大于180度的弧,劣弧是所对圆心角小于180度的弧。
3.在同圆或等圆中,能够互相重合的两条弧叫做等弧。
角
1.顶点在圆心上的角叫做圆心角(central angle),圆心角度数等于所对的弧的度数
2. 顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。圆周角等于相同弧所对的圆心角的一半,等于所对的弧的度数的一半
等圆
能够重合的两个圆叫做等圆。
同心圆
圆心相同的圆叫做同心圆。
同圆
半径相同的圆叫做同圆。
圆周率
圆的周长与直径的比值叫做圆周率。它是一个无限不循环小数,通常用字母π(读作“派”)表示。
π≈3.141592653589793238462643......计算时通常取近似值3.14。我们可以说圆的周长是直径的π倍,或大约3.14倍,不能直接说圆的周长是直径的3.14倍。
形
圆的对称性
圆是轴对称图形,对称轴在过圆心的直线上,圆有无数条对称轴。圆同时也是中心对称图形,对称中心有且仅有一个,位于圆的圆心。
表示方式
圆—⊙ ;半径—r或R(在环形圆中外环半径表示的字母);圆心—O;弧—⌒;直径—d ;
扇形弧长—L ; 周长—C ; 面积—S。
圆的周长:
圆周长的一半 c=πr
半圆的周长 c=πr+2r
圆的周长公式推导(此方面涉及到弧微分)
设圆的参数方程为
圆在一周内周长的积分
代入,可得
即
圆的面积公式
弧长角度公式
扇形弧长L=圆心角(弧度制)×R= nπR/180(θ为圆心角)(R为扇形半径)
扇形面积S=nπ R²/360=LR/2(L为扇形的弧长)
圆锥底面半径 r=nR/360(r为底面半径)(n为圆心角)
扇形面积公式
R是扇形半径,n是弧所对圆心角度数,π是圆周率,L是扇形对应的弧长。
也可以用扇形所在圆的面积除以360再乘以扇形圆心角的角度n,如下:
(L为弧长,R为扇形半径)
推导过程:S=πr²×L/2πr=LR/2
(L=│α│·R)
位置关系
点和圆位置关系
①P在圆O外,则 PO>r。
②P在圆O上,则 PO=r。
③P在圆O内,则 PO<r
反之亦然。
平面内,点P(x0,y0)与圆(x-a)²+(y-b)²=r²的位置关系判断一般方法是:
①如果(x0-a)²+(y0-b)²<r²,则P在圆内。
②如果(x0-a)²+(y0-b)²=r²,则P在圆上。
③如果(x0-a)²+(y0-b)²>r²,则P在圆外。
直线和圆位置关系
①直线和圆无公共点,称相离。 AB与圆O相离,d>r。
②直线和圆有两个公共点,称相交,这条直线叫做圆的割线。AB与⊙O相交,d
③直线和圆有且只有一公共点,称相切,这条直线叫做圆的切线,这个公共点叫做切点。圆心与切点的连线垂直于切线。AB与⊙O相切,d=r。(d为圆心到直线的距离)
平面内,直线Ax+By+C=0与圆x²+y²+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x²+y²+Dx+Ey+F=0,即成为一个关于x的方程
如果b2-4ac>0,则圆与直线有2个公共点,即圆与直线相交。
如果b2-4ac=0,则圆与直线有1个公共点,即圆与直线相切。
如果b2-4ac<0,则圆与直线有无公共点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x²+y²+Dx+Ey+F=0化为(x-a)²+(y-b)²=r²,令y=b,求出此时的两个x值x1、x2,并且规定x12,那么:
当x=-C/A1或x=-C/A>x2时,直线与圆相离;
当x1
圆和圆位置关系
①无公共点,一圆在另一圆之外叫外离,在之内叫内含。
②有公共点的,一圆在另一圆之外叫外切,在之内叫内切。
③有两个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
设两圆的半径分别为R和r,且R〉r,圆心距为P,则结论:外离P>R+r;外切P=R+r;内含P<R-r
内切P=R-r;相交R-r<P<R+r
圆的性质
⑴圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。
垂径定理的逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理
① 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。
②在同圆或等圆中,相等的弧所对的圆周角等于它所对的圆心角的一半(圆周角与圆心角在弦的同侧)。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
圆心角计算公式: θ=(L/2πr)×360°=180°L/πr=L/r(弧度)。
即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。
③ 如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。
⑶有关外接圆和内切圆的性质和定理
①一个三角形有确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等;
②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。
④两相切圆的连心线过切点。(连心线:两个圆心相连的直线)
⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。
(4)如果两圆相交,那么连接两圆圆心的线段(直线也可)垂直平分公共弦。
(5)弦切角的度数等于它所夹的弧的度数的一半。
(6)圆内角的度数等于这个角所对的弧的度数之和的一半。
(7)圆外角的度数等于这个角所截两段弧的度数之差的一半。
(8)周长相等,圆面积比正方形、长方形、三角形的面积大。
垂直于过切点的半径;经过半径的外端点,并且垂直于这条半径的直线,是这个圆的切线。
切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。
切线的性质:
(1)经过切点垂直于过切点的半径的直线是圆的切线。
(2)经过切点垂直于切线的直线必经过圆心。
(3)圆的切线垂直于经过切点的半径。
参考来源
参考资料
- ↑ 圆形的象征意义都是有哪些? ,360问答 , 2013年9月11日