求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

人类染色体查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索
人类染色体

来自 网络网 的图片

人类染色体遗传物质,基因的载体,人类的常染色体是成对存在的。

人体的体细胞染色体数目为23对,其中22对为男女所共有,称为常染色体(autosome);另外一对为决定性别的染色体,男女不同,称为性染色体(sex chromosome),男性为XY,女性为XX。在生殖细胞(generative cell)中,男性生殖细胞染色体的组成:22条常染色体+X或Y。女性生殖细胞染色体的组成:22条常染色体+X。

形态特征

根据着丝粒的位置不同,把人类染色体分为三种类型:①中央着丝粒染色体(metacentric hrmosome),着丝粒位于染色体纵轴的1/2~5/8处;②亚中着丝粒染色体(submetacentric chromosome),着丝粒位于染色体纵轴的5/8~7/8处;③近端着丝粒染色体(acrocentric chromosome),着丝粒位于染色体纵轴的7/8至末端。

染色体分组、核型与显带技术 [1]

(一)Denver体制

为了更好、更准确地表达人体细胞的染色体组成,1960年,在美国丹佛(Denver)市召开了第一届国际细胞遗传学会议,讨论并确立了世界通用的细胞内染色体组成的描述体系―Denver体制。这个体制按照各对染色体的大小和着丝粒位置的不同将22对染色体由大到小依次编为1至22号,并分为A、B、C、D、E、F、G共7个组,X和Y染色体分别归入C组和G组。

一个体细胞中的全部染色体所构成的图像即称核型。将待测细胞的全部染色体,按照 Denver体制配对、排列后,分析确定其是否与正常核型完全一致,就叫核型分析(karyotype analysis)。正常女性核型:46,XX;男性核型:46,XY。

如综合许多正常人核型的特点,根据不同染色体的形态特征,以模式图的方式表示,称为核型模式图(idiogram)(图2-6-5)。

(二)染色体显带及高分辨显带技术

用Giemsa常规染色的染色体标本,由于染色体着色均匀,不能把各染色体本身的细微特征完全显现出来。即使是最熟练的细胞遗传学家也只能根据各染色体的大致特征(大小,着丝粒位置)较准确地识别出第1、2、3、16号和Y等这几条染色体,对B、C、D、F和G组的染色体,则只能鉴别出属于那一组,而对组内各条染色体,特别是相邻号序的染色体,一般都难以区分。并且,对所有各染色体发生的微小结构畸变,例如缺失,易位等均不能检出,对许多染色体异常,特别是结构畸变的研究与临床应用都受到极大限制。60年代后期发现荧光染料可使染色体显示明暗相间的结构。这种显示明暗条纹的染色体标本被称为显带染色体(banding chromosome)。后来发现用其它方法亦可使染色体显带。染色体显带技术不仅能使我们准确地识别常规染色所不易认清的B、C、D、E、F、G组的个别染色体,而且对某些染色体结构改变的确认也有重要作用。图2-6-6是1971年巴黎会议确定的正常人体细胞的带型模式。

常用的显带技术有:

1.Q带 1968年瑞典细胞化学家Caspersson等应用荧光染料氮芥喹吖因(QM)处理染色体后,在荧光显微镜下,发现各染色体沿其长轴可显示出一条条宽窄和亮度不同的横纹带(band)。应用这一显带技术,可将人类的24种染色体(1~22号常染色体和X、Y染色体)显示出各自特异的带纹(如带纹数多少,亮、暗,带宽、窄和亮度等),称为带型(banding pattern)。Q带清晰准确,但标本需用荧光显微镜观察。因荧光持续时间短(0.5~1小时),故一般采用显微摄影后进行仔细分析。

2.G带 染色体标本如先经过盐溶液、碱、热、胰酶或蛋白酶、尿素及去垢剂等不同处理后。再用Giemsa染液染色,也能使染色体沿其纵轴显示深浅相间带纹称为G带。G带带纹清晰,标本可长期保存。

3.R带 所显示的明暗(或深浅)带纹恰与Q带(或G带)相反,故也称为反带,即R带。用这种方法染色后可使染色体末端着色特深,对测定染色体长度,末端区域结构改变,研究缺失或其它染色体重排的识别上非常有利。

4.C带 专门显示着丝粒及第1、9、16号与Y染色体长臂的异染色质区的带型。

5.T带 专门显示染色体端粒的带型。

6.N带 专门显示核仁组织区(NOR)的带型。

7.高分辨显带 巴黎会议(1971)提供的人类显带染色体模式图中一套单倍的染色体带纹数仅有320条带。70年代后期采用了细胞同步化方法和改进的显带技术,在细胞分裂的前中期、晚前期或早前期可获得更多分裂相和带纹更多的染色体,能显示550~850条带。研究者们可以在G2期或早前期染色体上显示出3000~10000条带,这种染色体称为高分辨染色体。这使染色体的研究逐步深入到分子生物学水平,将有助于揭示染色体与基因的关系。

(三)染色体带的命名

根据人类细胞遗传学命名的国际体制(ISCN)的规定,每条染色体都以显著的形态特征(着丝粒、染色体两臂的末端和某些带)作界标而区分为若干个区,每个区都含一定数量、一定排列顺序、一定大小和染色深浅不同的带,这就构成了每条染色体的带型。

区和带的命名是从着丝粒开始,向臂的远端序贯编号。"1"是最靠近着丝粒的,其次是"2"、"3"等。界标处的带应看作此界标以远区的"1"号带。在标示一特定的带时需要包括4项:①染色体号;②臂的符号;③区号;④在该区内的带号。这些项目依次列出,无需间隔或标点符号。例如:1号染色体短臂(P)包括三个区:1区3条 图2-6-6 正常人体染色体G带模式图 (巴黎,1971)空白部分为Q带的暗带,G带的浅染带;黑色部分为Q带的亮带,G带的深染带;斜线部分为着色不定区带,2区2条带,3区6条带;长臂(q)包括四个区:1区2条带,2区5条带,3区2条带,4区4条带。1p22表示为1号染色体短臂2区2带(图6-7)。在高分辨的染色体中,作为界标的带和一个普通的带都可能被细分为亚带、次亚带。如1p22.21 表示为1号染色体短臂2区2带2号亚带中的第1次亚带。

常见疾病

因先天性染色体数目异常或结构畸变而引起的疾病,称为染色体病(chromosome disease)。人类的单倍体染色体组上约有结构基因40000个。平均计算,每条染色体约由上千个基因。各染色体上的基因有严格的排列顺序,各基因间的毗邻关系也是较恒定的。所以染色体如果发生数目异常,甚至是微小的结构畸变,都必将导致许多基因的增加或缺失。染色体病常常涉及许多器官系统的形态和功能异常。临床表现往往是多样的,故又称染色体畸变综合征(chromosomal aberration syndrome)。在妊娠前三个月中的自然流产儿中,65%有染色体异常。巳发现的人类染色体数目异常或结构畸变约10000多种,几乎涉及到每一号染色体。巳确定或巳描述过的综合征有100多种。这些畸变如涉及第1~22号常染色体,称常染色体病,如涉及X、Y性染色体,则称性染色体病。根据夏家辉等报告的资料,新生活婴中染色体异常发生率为0.73%。据推算,我国每年出生的新生儿约为1857万人,其中有染色体异常者约有13.6万人,这些人将给家庭和社会带来沉重的精神和经济负担。因此,在中国广泛开展遗传病的研究,是一项十分重要的任务。

参考来源