求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

等腰三角形查看源代码讨论查看历史

跳转至: 导航搜索

等腰三角形(isosceles triangle),在几何学中,等腰三角形指至少有两边等长或相等的三角形,因此会造成有2个角相等。相等的两个边称等腰三角形的腰,另一边称为底边,相等的两个角称为等腰三角形的底角,其余的角叫做顶角。

等腰三角形的重心、和垂心都位于顶点向底边的垂线,可以把等腰三角形分成两个全等的直角三角形

等边三角形是底边和腰等长的等腰三角形,是等腰三角形的一个特殊形式。若等腰三角形的顶角为直角,称为等腰直角三角形。

命名

等腰三角形在英文中称为isosceles,来自希腊文,意思是“等长的脚”

性质

等腰三角形具有下列性质:

  • 两底角相等
  • 顶角的角平分线、底边的中线和高互相重合
  • 当腰长等于底边长时,则底角和顶角为60度(即等边三角形)

等腰三角形定理

若一三角形的二边相等,则二边的对角相等,此定理列在欧几里德的《几何原本》中,称为驴桥定理,也是等腰三角形定理。驴桥定理[1]是在几何原本的前面出现的较困难命题,是数学能力的一个门槛,无法理解此一命题的人可能也无法处理后面更难的命题。

驴桥定理的逆定理是若一三角形的二角相等,则二角的对边相等。

等腰三角形的全等

若二等腰三角形,其腰相等,底边也相等,即可以用SSS全等证明二个等腰三角形全等,而三角形的角可以用余弦定理求得。

对称轴

等腰三角形为轴对称,其对称轴和底边的高、中垂线、中线及顶角的角平分线重合(三线合一)。等腰三角形的内心、外心、重心、垂心[2]及顶点所对旁心五心共线,都在对称轴上。

和其他图形的关系

二个底边相等的等腰三角形可以组合成一个鹞形,此鹞形有一个对称轴,即为二等腰三角形的高。

二个全等的等腰三角形可以组合成一个菱形,此菱形有二个对称轴,包括二等腰三角形的高,以及等腰三角形的底边。

圆锥的投影图中有一面即为等腰三角形。

扇形的二半径和扇形的弦相连,也是等腰三角形。

视频

等腰三角形 相关视频

初中数学八年级 等腰三角形三线合一
等腰三角形的性质

参考文献