求真百科欢迎当事人提供第一手真实资料,洗刷冤屈,终结网路霸凌。

观测天文学查看源代码讨论查看历史

事实揭露 揭密真相
跳转至: 导航搜索

观测天文学英语:Observational astronomy)是天文学的一个分支,常用于取得数据以与天文物理学的理论比对,或以测量所得的物理量解释模型的涵义。在实务上,通过望远镜或其他天文仪器的使用来观测目标。

做为一门科学,天文学有些困难之处,由于距离的遥远,要直接验证宇宙的特性是不可能的。然而,有为数众多的恒星可以被观察到,已经能够让天文学家获取一些事实的真相。这些观测到的资讯所绘制成的各种图表,与纪录足以显示一般的趋向。变星[1]就是很贴切的具体例证,能借由变星的特性,测量出遥远天体的距离。这一种类的距离指标,足以测量邻近的距离,包括附近的星系,进而对其他现象进行测量。

肉眼

17世纪发明望远镜前,早期的观测天文学只能依赖肉眼以及各种用于测量时间方向的仪器。第谷[2]有系统的观测行星,他所搜集的资料让开普勒得以建立行星运动的法则。

人类非常关心天空,因而在历史上留下许多纪录。古老的巨石阵就是为了观察太阳的运动来测量时间而建立的,星座是由一些恒星在天空中组成的图样,并且与地球上的季节变化连结在一起,也流传下来许多的神话与传说。

不使用望远镜,单靠眼睛也能做许多不同的观测,古老的记录记载了一些突然出现在天空中的亮星,被称为超新星,甚至在白天也能看见。也记录了被视为灾难预兆的彗星,还有划过天际的流星。在现代,科学家透过在南极冰原上搜集到的大量陨石,可以研究和测量小行星,甚至火星的表面。

望远镜

意大利的伽利略是首位使用望远镜观察天空并且记录下所见到的景象的天文学家,此后望远镜大量投入使用辅助肉眼的天文观测上,观测天文学因为望远镜制作技术的改进而飞跃的发展。

往后由于物理学光学的急速发展,传统的观测天文学又产生了新的分支:各种电磁波频谱区域的观测。

  • 光学天文学:使用光学元件(面镜、透镜和实体探测器)来观察从近红外线到近紫外线光的部分,可见光天文学(使用的是眼睛能看见的波长,从400 - 700 nm)就再这一段的中间。
  • 红外天文学:分析和观察红外辐射,(比传统的实体硅检波器能侦测的波长还要长,约在1μm)。以反射望远镜作接收器,但焦点的探测器换成对红外波长敏感的设备。太空望远镜因脱离大气层,能观察被大气层遮蔽或阻挡(来自大气层的热辐射)的部分波长。
  • 射电天文学:侦测波长在微米至米级的辐射,使用的接收器与无线电广播类似,但灵敏度更高。参考无线电望远镜。
  • 高能天文学:包括X射线天文学、伽玛射线天文学和末端的紫外线天文学,主要的研究对象是中微子和宇宙射线

可见光和射电天文学可以由地面天文台观测,因为这些波段能穿透大气层并被侦测到。天文台通常都建在高处,以尽可能减少大气层的消光和畸变。有些红外波段会被大气层内的水蒸气强烈吸收,所以许多红外天文台都选择建在干燥的高地上,或在太空中进行观测。

视频

观测天文学 相关视频

用天文望远镜看到的星空是什么样的?与肉眼观察到的有什么区别
超新星爆发于1054年!被古中国首次记载!

参考文献