烏鴉悖論檢視原始碼討論檢視歷史
烏鴉悖論 |
烏鴉悖論 |
中文名稱 :烏鴉悖論 發明人 :卡爾·古斯塔夫·亨佩爾 別 稱 :亨佩爾悖論 內 容 :歸納法違反直覺 |
烏鴉悖論,也稱亨佩爾的烏鴉、亨佩爾悖論,由20世紀40年代德國邏輯學家卡爾·古斯塔夫·亨佩爾(Carl Gustav Hempel)提出,旨在說明歸納法違反直覺。烏鴉悖論內容:假設"所有烏鴉都是黑色的"。可以觀察成千上萬隻烏鴉,然後發現烏鴉都是黑的。每次觀察後,對"所有烏鴉都是黑的"的信任度會逐漸提高。歸納法原理由此看起來是合理的。問題在於,"所有烏鴉都是黑的" 的論斷,在邏輯上和"所有不是黑色的東西不是烏鴉"等價。如果觀察到一隻紅蘋果,不是黑色的,也不是烏鴉,那麼這次觀察必會增加對"所有不是黑色的東西不是烏鴉"的信任度,由此更加確信"所有的烏鴉都是黑色的"!有些哲學家質疑"等價原理"。也許紅蘋果能夠增加對論斷"所有不是黑色的東西不是烏鴉"的信任度,而不增加對 "所有烏鴉都是黑色的"信任。這個提議受到質疑,因為不能對等價的兩個命題有不同的信任度,如果你知道它們都是真的或都是假的。這樣一來,雖然"所有烏鴉都是黑色的"和"所有不是黑色的東西都不是烏鴉"這兩個命題所擁有的信任度必須相等,但只有"黑色的烏鴉"才能同時增加兩者的信任度,而"非黑色的非烏鴉"並不增加任何一個命題的信任度。
問題綜述
幾千年以來,無數人觀察了許多事物,比如地心引力法則,人們趨於相信其極可能是真理。這種類型的推理可以總結成"歸納法原理":如果實例X 被觀察到和論斷 T 相符合,那麼論斷 T 正確的概率增加。亨佩爾給出了歸納法原理的一個例子:"所有烏鴉都是黑色的"論斷。我們可以出去觀察成千上萬隻烏鴉,然後發現他們都是黑色的。在每一次觀察之後,我們對"所有烏鴉都是黑色的"的信任度會逐漸提高。歸納法原理在這裡看起來是合理的。問題出現了。"所有烏鴉都是黑色的" 的論斷在邏輯上和"所有不是黑色的東西不是烏鴉"等價。如果我們觀察到一隻紅蘋果,它不是黑色的,也不是烏鴉,那麼這次觀察必會增加我們對"所有不是黑色的東西不是烏鴉"的信任度,因此更加確信"所有的烏鴉都是黑色的"!這個問題被總結成:
- ★我從未見過紫色的牛,I never saw a purple cow
- ★但若我見到一頭,But if I were to see one
- ★烏鴉皆黑的概率,Would the probability ravens are black
- ★更加可能是麼?Have a better chance to be one?
(改寫自吉利特·伯吉斯(Gelett Burgess)的詩)
解決提議
解決它和直覺的衝突,哲學家們提出了一些方法。美國邏輯學家 納爾遜·古德曼(Nelson Goodman)建議對我們的推理添加一些限制,比如永遠不要考慮支持論斷"所有P滿足Q"且同時也支持"沒有P滿足非Q" 的實例。其他一些哲學家質疑"等價原理"。也許紅蘋果能夠增加我們對論斷"所有不是黑色的東西不是烏鴉"的信任度,而不增加我們對 "所有烏鴉都是黑色的"信任。這個提議受到質疑,因為你不能對等價的兩個命題有不同的信任度,如果你知道他們都是真的或都是假的。古德曼,以及其後的威拉德·馮·奧曼·蒯因,使用術語"projectible predicate"來描述這些類似於"烏鴉"和"黑色"的命題, 所有這類命題是支持歸納推理法的;而"非projectible predicate"則為與之相反的後者,如"非黑"和"非烏鴉"這些命題並不支持歸納推理法。蒯因還提出一個需要證實的猜想:如果任何命題是projectible的;在無限物件組成的全集中,一個projectible的命題的補集永遠是非projectible的。這樣一來,雖然"所有烏鴉都是黑色的"和"所有不是黑色的東西都不是烏鴉"這兩個命題所擁有的信任度必須相等,但只有"黑色的烏鴉"才能同時增加兩者的信任度,而"非黑色的非烏鴉"並不增加任何一個命題的信任度。還有些哲學家認為其實這個命題是完全正確的,出錯的是我們自己的邏輯。其實觀察到一個紅色的蘋果確實會增加烏鴉都是黑色的可能性!這就相當於:如果有人把宇宙中所有不是黑的物體都給你看,而你發現所有的物體都不是烏鴉,那你就完全可以斷定所有烏鴉都是黑色的了。這個"悖論"看上去荒謬只是因為宇宙中 "不是黑色的"物體遠遠多於"烏鴉",所以發現一個"不是黑色的"物體只增加了極其微小的對於"烏鴉都是黑色的"的信任度,而相對而言,每發現一隻黑色的烏鴉就是一個有力的證據了。[1]
貝葉斯定理
除了以上的陳述以外,"歸納法原理"還有另一種形式,就是貝葉斯推理。設 X 為支持論斷 T 的一個實例,而 I 表示我們所有的已知信息。T成立的幾率,已知 X 和 I 都是成立的,可以推得這裡 Pr(T | I) 表示在只有 I 是已知成立的情況下,T 成立的幾率;Pr(X | TI) 表示在 T 和 I 都已知成立的情況下,X 成立的幾率;而 Pr(X | I) 表示在只有 I 是已知成立的情況下,X 成立的幾率.
應用實例
如果有人隨機選一個蘋果,那麼他看到一個紅蘋果的幾率和"烏鴉"的顏色是完全沒有關係的。這時分子等於分母,所以分數等於1,所以以上討論的幾率不會改變。所以看見一隻紅色的蘋果不會增加人們對"烏鴉都是黑色的"的信任度。而如果那人是隨機選擇一個非黑的物件,那個物件正好是一個紅的蘋果,那麼我們會得到一個分子大於分母的,幾乎等於一的假分數。所以在這個情況下,看見一隻紅蘋果確實會極微小地增加我們對"烏鴉都是黑色的"的信任度。其實,隨着一個人看到的不是黑色的東西的增加(並發現其中沒有烏鴉),"烏鴉都是黑色的"的幾率會趨向於1。綜上所述, 無論是"烏鴉悖論"的一例一例尋求例證,或者是邏輯經驗主義的強意義的證實還是弱意義的或然證實,它的主要目的都是尋找世界的確定性。
相關視頻
小輝說奇:烏鴉悖論,被火雞悖論無情推翻的哲學問題