傳遞函數檢視原始碼討論檢視歷史
傳遞函數是中國的一個科技名詞。
漢字是世界上最古老的文字之一[1],已有六千多年的歷史。從倉頡造字的古老傳說到公元前1000多年前甲骨文的發現,漢字有着深厚的歷史底蘊。後來的演變經歷了幾千年的漫長曆程,在形體上逐漸由圖形變為筆畫,象形[2]變為象徵,複雜變為簡單;在造字原則上從表形、表意到形聲。
名詞解釋
傳遞函數是指零初始條件下線性系統響應(即輸出)量的拉普拉斯變換(或z變換)與激勵(即輸入)量的拉普拉斯變換之比。記作G(s)=Y(s)/U(s),其中Y(s)、U(s)分別為輸出量和輸入量的拉普拉斯變換。傳遞函數是描述線性系統動態特性的基本數學工具之一,經典控制理論的主要研究方法——頻率響應法和根軌跡法——都是建立在傳遞函數的基礎之上。傳遞函數是研究經典控制理論的主要工具之一。
把具有線性特性的對象的輸入與輸出間的關係,用一個函數(輸出波形的拉普拉斯變換與輸入波形的拉普拉斯變換之比)來表示的,稱為傳遞函數。原是控制工程學的用語,在生理學上往往用來表述心臟、呼吸器官、瞳孔等的特性。
系統的傳遞函數與描述其運動規律的微分方程是對應的。可根據組成系統各單元的傳遞函數和它們之間的聯結關係導出整體系統的傳遞函數,並用它分析系統的動態特性、穩定性,或根據給定要求綜合控制系統,設計滿意的控制器。以傳遞函數為工具分析和綜合控制系統的方法稱為頻域法。它不但是經典控制理論的基礎,而且在以時域方法為基礎的現代控制理論發展過程中,也不斷發展形成了多變量頻域控制理論,成為研究多變量控制系統的有力工具。傳遞函數中的復變量s在實部為零、虛部為角頻率時就是頻率響應。
傳遞函數也是《積分變換》里的概念。對復參數s,函數f(t)*e^(-st)在(-∞,+∞)的積分,稱為函數f(t)的(雙邊)拉普拉斯變換,簡稱拉氏變換(如果是在[0,+∞)內積分,則稱為單邊拉普拉斯變換,記作F(s),這是個複變函數。
設一個系統的輸入函數為x(t),輸出函數為y(t),則y(t)的拉氏變換Y(s)與x(t)的拉氏變換X(s)的商:W(s)=Y(s)/X(s)稱為這個系統的傳遞函數。
傳遞函數是由系統的本質特性確定的,與輸入量無關。知道傳遞函數以後,就可以由輸入量求輸出量,或者根據需要的輸出量確定輸入量了。
傳遞函數的概念在自動控制理論里有重要應用。
參考文獻
- ↑ 雲端超市•第407期┃「說文解字,中國最古老的一種文字」——篆書研究 主講人:倪文東,搜狐,2022-10-28
- ↑ 為什麼中國人會發明象形文字?,搜狐,2020-10-06