孟增檢視原始碼討論檢視歷史
孟增,男,合肥工業大學土木與水利工程學院副教授。
人物履歷
教育背景
2005/09–2009/06,蘭州大學,理論與應用力學,學士
2009/09–2011/06,大連理工大學,工程力學,碩士(碩博連讀)
2011/09–2015/10,大連理工大學,工程力學,博士(碩博連讀)
工作經歷
2015/10–2017/12,合肥工業大學,土木與水利工程學院,講師
2018/12–至 今,合肥工業大學,土木與水利工程學院,副教授
2020/10–至 今,合肥工業大學,土木與水利工程學院,博導
科研項目
[1] 國家自然科學基金面上項目,功能梯度板殼的高置信度混合不確定性分析及拓撲優化設計, 2020/01-2023/12,主持.
[2] 優秀青年人才培育計劃A項目,高置信度結構可靠性拓撲優化算法研究, 2020/01-2022/12,主持.
[3] 國家自然科學青年科學基金,含缺陷加筋薄壁結構的全局可靠性優化設計方法研究, 2017/01-2019/12,主持.
[4] 安徽省自然科學青年科學基金,加筋筒殼結構後驗可靠性優化設計方法研究, 2017/01-2019/12,主持.
[5] 國家重點實驗室開放課題項目,多源不確定性下工業機器人定位精度時變可靠性分析及優化設計, 2020/09-2022/12,主持.
獲獎情況
[1] 複雜系統可靠性優化設計方法及應用研究,安徽省力學學會力學科技進步獎,2020,排名1/2
學術成果
[1] Meng Z, Li G, Wang X, Sait S M, Yıldız A R. A Comparative Study of Metaheuristic Algorithms for Reliability-Based Design Optimization Problems [J]. Archives of Computational Methods in Engineering, 2021, 28 (3): 1853-1869.
[2] Meng Z, Pang Y, Pu Y, Wang X. New hybrid reliability-based topology optimization method combining fuzzy and probabilistic models for handling epistemic and aleatory uncertainties [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 363 112886.
[3] Meng Z, Zhang Z H, Zhou H L, et al. Robust design optimization of imperfect stiffened shells using an active learning method and a hybrid surrogate model [J]. Engineering Optimization, 2020, 52 (12): 2044-2061.
[4] Meng Z, Zhang Z, Zhou H. A novel experimental data-driven exponential convex model for reliability assessment with uncertain-but-bounded parameters [J]. Applied Mathematical Modelling, 2020, 77 773-787.
[5] Meng Z, Zhang Z, Li G, et al. An active weight learning method for efficient reliability assessment with small failure probability [J]. Struct Multidisc Optim, 2020, 61 (3): 1157-1170.
[6] Meng Z, Zhang D, Li G, et al. An importance learning method for non-probabilistic reliability analysis and optimization [J]. Struct Multidisc Optim, 2019, 59 (4): 1255-1271.
[7] Meng Z, Zhang Z H, Zhang D Q, Yang D X. An active learning method combining Kriging and accelerated chaotic single loop approach (AK-ACSLA) for reliability-based design optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2019, 357 (12): 112570.
[8] Meng Z, Zhou H. New target performance approach for a super parametric convex model of non-probabilistic reliability-based design optimization [J]. Computer Methods in Applied Mechanics and Engineering, 2018, 339 (9): 644-662.
[9] Meng Z, Hu H, Zhou H. Super parametric convex model and its application for non-probabilistic reliability-based design optimization [J]. Applied Mathematical Modelling, 2018, 55 (3): 354-370.
[10] Meng Z, Zhou H L, Hu H, et al. Enhanced sequential approximate programming using second order reliability method for accurate and efficient structural reliability-based design optimization [J]. Applied Mathematical Modelling, 2018, 62 (10): 562-579.
[11] Meng Z, Li G, Yang D, Zhan L. A new directional stability transformation method of chaos control for first order reliability analysis [J]. Struct Multidisc Optim, 2017, 55 (2): 601-612.
[12] Meng Z, Pu Y, Zhou H. Adaptive stability transformation method of chaos control for first order reliability method [J]. Engineering with Computers, 2017, DOI: 10.1007/s00366-017-0566-2
[13] Meng Z, Zhou H, Li G, et al. A hybrid sequential approximate programming method for second-order reliability-based design optimization approach [J]. Acta Mechanica, 2017, 228(5): 1965-78.
[14] Meng Z, Zhou HL, Li G, et al. A decoupled approach for non-probabilistic reliability-based design optimization [J]. Computers & Structures, 2016, 175(10): 65-73.
[15] Meng Z, Li G, Wang B P, Hao P. A hybrid chaos control approach of the performance measure functions for reliability-based design optimization [J]. Computers & Structures, 2015, 146 (1): 32-43.[1]