求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

方差分析檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
  方差分析

方差分析(Analysis of Variance,簡稱ANOVA),又稱「變異數分析」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。 由於各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。

簡介

單因素單因素方差分析:(一)單因素方差分析概念理解步驟是用來研究一個控制變量的不同水平是否對觀測變量產生了顯著影響。這裡,由於僅研究單個因素對觀測變量的影響,因此稱為單因素方差分析。例如,分析不同施肥量是否給農作物產量帶來顯著影響,考察地區差異是否影響婦女的生育率,研究學歷對工資收入的影響等。這些問題都可以通過單因素方差分析得到答案。單因素方差分析的第一步是明確觀測變量和控制變量。例如,上述問題中的觀測變量分別是農作物產量、婦女生育率、工資收入;控制變量分別為施肥量、地區、學歷。單因素方差分析的第二步是剖析觀測變量的方差。方差分析認為:觀測變量值的變動會受控制變量和隨機變量兩方面的影響。據此,單因素方差分析將觀測變量總的離差平方和分解為組間離差平方和和組內離差平方和兩部分,用數學形式表述為:SST=SSA+SSE。單因素方差分析的第三步是通過比較觀測變量總離差平方和各部分所占的比例,推斷控制變量是否給觀測變量帶來了顯著影響

評價

容易理解:在觀測變量總離差平方和中,如果組間離差平方和所占比例較大,則說明觀測變量的變動主要是由控制變量引起的,可以主要由控制變量來解釋,控制變量給觀測變量帶來了顯著影響;反之,如果組間離差平方和所占比例小,則說明觀測變量的變動不是主要由控制變量引起的,不可以主要由控制變量來解釋,控制變量的不同水平沒有給觀測變量帶來顯著影響,觀測變量值的變動是由隨機變量因素引起的單因素方差分析的基本分析只能判斷控制變量是否對觀測變量產生了顯著影響。如果控制變量確實對觀測變量產生了顯著影響,進一步還應確定控制變量的不同水平對觀測變量的影響程度如何,其中哪個水平的作用明顯區別於其他水平,哪個水平的作用是不顯著的,等等。[1]

參考文獻