正交幅度調製檢視原始碼討論檢視歷史
正交幅度調製(QAM,Quadrature Amplitude Modulation)是一種在兩個正交載波上進行幅度調製的調製方式。這兩個載波通常是相位差為90度(π/2)的正弦波,因此被稱作正交載波。這種調製方式因此而得名。
- 中文名:正交幅度調製
- 外文名:QAM
- 類 型:幅度調製的調製方式
- 相位差:90度(π/2)的正弦波
- 別 名:正交載波
- 常見形式:16-QAM、64-QAM、256-QAM
簡介
同其它調製方式類似,QAM通過載波某些參數的變化傳輸信息。在QAM中,數據信號由相互正交的兩個載波的幅度變化表示。正交幅度調製信號波形如圖1所示。
模擬信號的相位調製和數字信號的PSK可以被認為是幅度不變、僅有相位變化的特殊的正交幅度調製。由此,模擬信號頻率調製和數字信號FSK也可以被認為是QAM的特例,因為它們本質上就是相位調製。這裡主要討論數字信號的QAM,雖然模擬信號QAM也有很多應用,例如NTSC和PAL制式的電視系統就利用正交的載波傳輸不同的顏色分量。
QAM發射信號集
類似於其他數字調製方式,QAM發射信號集可以用星座圖方便地表示。星座圖上每一個星座點對應發射信號集中的一個信號。設正交幅度調製的發射信號集大小為N,稱之為N-QAM。常見的QAM形式有16-QAM、64-QAM、256-QAM等。 [1]
其他
當對數據傳輸速率的要求高過8-PSK能提供的上限時,一般採用QAM的調製方式。因為QAM的星座點比PSK的星座點更分散,星座點之間的距離因之更大,所以能提供更好的傳輸性能。但是QAM星座點的幅度不是完全相同的,所以它的解調器需要能同時正確檢測相位和幅度,不像PSK解調只需要檢測相位,這增加了QAM解調器的複雜性。
數字通信中經常用錯誤率(包括誤符號率和誤比特率)與信噪比的關係衡量調製和解調方式的性能。下面給出一些概念的記法,以得到AWGN信道下錯誤率的表達式:
M = 星座點的個數
Eb = 平均比特能量
Es = 平均符號能量 =
N0 = 噪聲功率譜密度
Pb = 誤比特率
Pbc = 每個正交載波上的誤比特率
Ps = 誤符號率
Psc = 每個正交載波上的誤符號率
矩形QAM(Rectangular QAM)的星座圖呈矩形網格配置。因為矩形QAM信號之間的最小距離並不是相同能量下最大的,因此它的誤碼率性能沒有達到最優。不過,考慮到矩形QAM等效於兩個正交載波上的脈衝幅度調製(PAM)的疊加,因此矩形QAM的調製解調比較簡單。而後面介紹的非矩形QAM雖然能達到略好一些的誤碼率性能,但是付出的代價是困難得多的調製和解調。
最早的矩形QAM一般是16-QAM。其原因是很容易就看得出來2-QAM和4-QAM實際上是二進制相移鍵控(BPSK)和正交相移鍵控(QPSK),而8-QAM則有將單數位的位分到兩個載波上的問題,8-PSK要容易得多,因此8-QAM很少被使用。[2]
星座圖表示
類似於其他數字調製方式,QAM發射的信號集可以用星座圖方便地表示,星座圖上每一個星座點對應發射信號集中的那一點。
星座點經常採用水平和垂直方向等間距的正方網格配置,當然也有其他的配置方式。
數字通信中數據常採用二進制數表示,這種情況下星座點的個數一般是2的冪。
星座點數越多,每個符號能傳輸的信息量就越大。但是,如果在星座圖的平均能量保持不變的情況下增加星座點,會使星座點之間的距離變小,進而導致誤碼率上升。因此高階星座圖的可靠性比低階要差。
採用QAM調製技術,信道帶寬至少要等於碼元速率,為了定時恢復,還需要另外的帶寬,一般要增加15%左右。[3]
優缺點
與其他調製技術相比,QAM編碼具有能充分利用帶寬、抗噪聲能力強等優點。
但QAM調製技術用於ADSL的主要問題是如何適應不同電話線路之間較大的性能差異。要取得較為理想的工作特性,QAM接收器需要一個和發送端具有相同的頻譜和相應特性的輸入信號用於解碼,QAM接收器利用自適應均衡器來補償傳輸過程中信號產生的失真,因此採用QAM的 ADSL系統的複雜性來自於它的自適應均衡器。
視頻
幅度調製原理