氧化磷酸化檢視原始碼討論檢視歷史
氧化磷酸化是一個生物化學過程,發生在真核細胞的線粒體內膜或原核生物的細胞質中,是物質在體內氧化時釋放的能量通過呼吸鏈供給ADP與無機磷酸合成ATP的偶聯反應。
2019年5月,Cancer Cell最新刊登了一篇文章,研究人員發現在禁食狀態下使用二甲雙胍可以顯著抑制腫瘤生長,並提出PP2A-GSK3β-MCL-1通路可能是腫瘤治療的新靶點。研究發現,腫瘤細胞會出現不同於正常細胞的代謝變化,同時腫瘤細胞自身可通過糖酵解和氧化磷酸化(OXPHOS)之間的轉換來適應代謝環境的改變。
中文名氧化磷酸化
外文名oxidative phosphorylation
場 所線粒體
過 程生物化學過程存在細胞真核細胞反應產物ATP
物質簡介
磷酸化(phosphorylation)是指在生物氧化中伴隨着ATP生成的作用。有代謝物連接的磷酸化和呼吸鏈連接的磷酸化兩種類型。即ATP生成方式有兩種。一種是代謝物脫氫後,分子內部能量重新分布,使無機磷酸酯化先形成一個高能中間代謝物,促使ADP變成ATP。這稱為底物水平磷酸化。如3-磷酸甘油醛氧化生成1,3-二磷酸甘油酸,再降解為3-磷酸甘油酸。另一種是在呼吸鏈電子傳遞過程中偶聯ATP的生成,這就是氧化磷酸化。生物體內95%的ATP來自這種方式。
偶聯部位
根據實驗測定氧的消耗量與ATP的生成數之間的關係以及計算氧化還原反應中ΔGO'和電極電位差ΔE的關係可以證明。
P/O比值是指代謝物氧化時每消耗1摩爾氧原子所消耗的無機磷原子的摩爾數,即合成ATP的摩爾數。實驗表明,NADH在呼吸鏈被氧化為水時的P/O值約等於2.5,即生成2.5分子ATP;FADH2氧化的P/O值約等於1.5,即生成1.5分子ATP。
氧-還電勢沿呼吸鏈的變化是每一步自由能變化的量度。根據ΔGO'= - nFΔE O'(n是電子傳遞數,F是法拉第常數),從NADH到Q段電位差約0.36V,從Q到Cytc為0.21V,從aa3到分子氧為0.53V,計算出相應的ΔGO'分別為69.5、40.5、102.3kJ/mol。於是普遍認為下述3個部位就是電子傳遞鏈中產生ATP的部位。
NADH→NADH脫氫酶→‖Q → 細胞色素bc1複合體→‖Cytc →aa3→‖O2
作用
氧化磷酸化作用是指有機物包括糖、脂、氨基酸等在分解過程中的氧化步驟所釋放的能量,驅動ATP合成的過程。在真核細胞中,氧化磷酸化作用在線粒體中發生,參與氧化及磷酸化的體系以複合體的形式分布在線粒體的內膜上,構成呼吸鏈,也稱電子傳遞鏈。其功能是進行電子傳遞、H+傳遞及氧的利用,產生H2O和ATP
擴展:這種複合體一般有四個部分組成:複合體1.NADH-Q還原酶,複合體2.琥珀酸—Q還原酶.複合體3.細胞色素還原酶.4細胞色素氧化酶。
電子在電子載體的傳遞過程為:NADH或FADH2 --Q(泛醌)——細胞色素c——O2(形成水和ATP的過程)。
電子和質子的轉移分子
電子傳遞鏈能承載質子和電子,將電子從供體轉移到受體,並在膜間搬運質子。這些過程會使用可溶性的蛋白質結合轉移分子。在線粒體中,電子在膜間隙內由水溶性電子傳遞蛋白細胞色素c傳遞。它通過其結構中血紅素基團的一個鐵原子的還原和氧化過程傳輸電子。在某些細菌的周質空間中也發現了細胞色素c。
線粒體內膜中的脂溶性電子載體輔酶Q10(Q)通過氧化還原循環,可同時攜帶電子和質子。這個小苯醌分子疏水性很強,所以它能自由地在膜中擴散。當Q接受兩個電子和兩個質子時,它被還原為「泛酚」形式(QH2);當QH2釋放兩個電子和兩個質子時,它被氧化為「泛醌」(Q)形式。結果,如果安排兩種酶,使得Q在膜的一側被還原,而QH2在另一側被氧化,泛醌就能耦合這些反應,並攜帶質子穿過膜。除了泛醌,一些細菌在電子傳遞鏈中還使用其他的醌類,如甲萘醌。
在蛋白質中,電子在黃素輔因子、鐵硫簇和細胞色素之間轉移。有幾種類型的鐵硫簇化合物。在電子傳遞鏈中發現的最簡單的一種包含了由兩個無機硫原子連接的兩個鐵原子;這些稱為[2Fe-2S]簇。第二種稱為[4Fe-4S],包含了由四個鐵原子和四個硫原子組成的立方體。在這些簇中,每個鐵原子與一個額外的氨基酸配位,通常是半胱氨酸中的硫原子。金屬離子輔因子在氧化還原反應中不結合或釋放質子,因此在電子傳遞鏈中都只通過蛋白質傳輸電子。電子沿着這些輔因子鏈跳躍,在蛋白質中移動很長的距離。這些現象的本質是量子隧穿效應,在小於1.4×10米的距離內非常迅速。[1]
電子傳遞鏈
真核生物的
許多生化代謝過程,如糖酵解、三羧酸循環和β氧化,都會產生還原型輔酶NADH。此輔酶含有高電極電勢的電子;也就是說,它們將在氧化時釋放出大量的能量。然而,細胞不會一次性釋放完全部的能量,因為在這種情況下,反應將無法控制。相反,電子從NADH釋放出來,並通過一系列的酶傳遞給氧氣,其中每步只釋放少量的能量。由複合體I到IV組成的這組酶稱為電子傳遞鏈,存在於線粒體內膜中。琥珀酸也被電子傳遞鏈氧化,但起點不同。
真核生物中,電子傳遞系統中的酶用從氧化NADH釋放的能量,泵送質子穿過線粒體內膜。這會使質子在膜間隙中積聚,產生跨膜電化學梯度。然後,ATP合酶使用存儲在其中的勢能以產生ATP。其中,真核細胞線粒體中的氧化磷酸化是這一過程研究最為透徹的樣例。線粒體存在於幾乎所有的真核生物中,但部分原生生物例外,如陰道毛滴蟲中稱為氫化酶體的殘留線粒體會將質子還原為氫。