求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

范德瓦耳斯力檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋

來自 搜狐網 的圖片

范德瓦耳斯力是是指全國科學技術名詞審定委員會公布的科技名詞。

漢字是民族靈魂的紐帶,在異國他鄉謀生,漢字[1]便是一種寄託,哪怕是一塊牌匾、一紙小條,上面的方塊字會像磁鐵般地吸引着你,讓你感受到來自祖國的親切。因為那中國人的情思已經濃縮為那最簡單的橫豎撇捺[2]

名詞解釋

范德瓦耳斯力(范德瓦耳斯力)一般指分子間作用

分子間作用力,又稱范德華力(van der Waals force)。分子間作用力(范德華力)有三個來源:①極性分子的永久偶極矩之間的相互作用。②一個極性分子使另一個分子極化,產生誘導偶極矩並相互吸引。③分子中電子的運動產生瞬時偶極矩,它使鄰近分子瞬時極化,後者又反過來增強原來分子的瞬時偶極矩;這種相互耦合產生靜電吸引作用,這三種力的貢獻不同,通常第三種作用的貢獻最大。

分子間作用力只存在於分子(molecule)與分子之間或惰性氣體(noble gas)原子(atom)間的作用力,又稱范德華力(van der waals),具有加和性,屬於次級鍵。

氫鍵(hydrogen bond)、弱范德華力、疏水作用力、芳環堆積作用、鹵鍵都屬於次級鍵(又稱分子間弱相互作用)。

氫鍵

氫鍵屬不屬於分子間作用力,取決於對「分子間作用力」的定義。按照廣義范德華力定義[引力常數項可將各種極化能(偶極(dipole)、誘導(induced)和氫鍵能)歸併為一項來計算],氫鍵屬於分子間作用力。按照傳統定義:分子間作用力定義為:「分子的永久偶極(permanent dipole)和瞬間偶極(instantaneous dipole)引起的弱靜電相互作用」那麼氫鍵不屬於(因為氫鍵至少包含四種相互作用,只有三種與分子間作用力有交集,但還存在最高被占用軌道與另一分子最低空餘軌道發生軌道重疊)。

氫鍵既可以存在於分子內也可以存在於分子間。其次,氫鍵與分子間作用力的量子力學計算方法也是不一樣的。另外,氫鍵具有較高的選擇性,不嚴格的飽和性和方向性;而分子間作用力不具有。在「摺疊體化學」中,多氫鍵具有協同作用,誘導線性分子螺旋,而分子間作用力不具有協同效應。超強氫鍵具有類似共價鍵(covalent bond)本質,在學術上有爭議,必須和分子間作用力加以區分。

若錯誤的將分子間作用力、氫鍵、鹵鍵看成等同作用,那麼分子識別、DNA結構模擬、蛋白質結構堆積,就根本不可能研究了。所以在學術上,這些電磁互作用都統稱為次級鍵。

作用力分類

定義:范德華力(又稱分子作用力)產生於分子或原子之間的靜電相互作用。其能量計算的經驗方程為:U =B/r12- A/r6 (對於2 個碳原子間,其參數值為B =11.5 ×10-6 kJ·nm12/mol ;A=5.96 × 10-3 kJ·nm6/mol;不同原子間A、B 有不同取值)當兩原子彼此緊密靠近電子云相互重疊時,發生強烈排斥,排斥力與距離12 次方成反比。低點是范德華力維持的距離作用力最大,稱范德華半徑。分子引力與距離6次方成反比,分子斥力與距離12次方成反比。

范德華力又可以分為三種作用力:誘導力、色散力和取向力。

色散力

色散力(dispersion force 也稱「倫敦力」)所有分子或原子間都存在。是分子的瞬時偶極間的作用力,即由於電子的運動,瞬間電子的位置對原子核是不對稱的,也就是說正電荷重心和負電荷重心發生瞬時的不重合,從而產生瞬時偶極。色散力和相互作用分子的變形性有關,變形性越大(一般分子量愈大,變形性愈大)色散力越大。色散力和相互作用分子的電離勢(即為電離能)有關,分子的電離勢越低(分子內所含的電子數愈多),色散力越大。色散力的相互作用隨着1/r6 而變化。其公式為:I1和I2 分別是兩個相互作用分子的電離能,α1 和α2 是它們的極化率。

誘導力

誘導力(induction force)在極性分子和非極性分子之間以及極性分子和極性分子之間都存在誘導力。由於極性分子偶極所產生的電場對非極性分子發生影響,使非極性分子電子云變形(即電子云被吸向極性分子偶極的正電的一極),結果使非極性分子的電子云與原子核發生相對位移,本來非極性分子中的正、負電荷重心是重合的,相對位移後就不再重合,使非極性分子產生了偶極。這種電荷重心的相對位移叫做「變形」,因變形而產生的偶極,叫做誘導偶極,以區別於極性分子中原有的固有偶極。誘導偶極和固有偶極就相互吸引,這種由於誘導偶極而產生的作用力,叫做誘導力。在極性分子和極性分子之間,除了取向力外,由於極性分子的相互影響,每個分子也會發生變形,產生誘導偶極。其結果使分子的偶極距增大,既具有取向力又具有誘導力。在陽離子和陰離子之間也會出現誘導力。

誘導力與極性分子偶極矩的平方成正比。誘導力與被誘導分子的變形性成正比,通常分子中各原子核的外層電子殼越大(含重原子越多)它在外來靜電力作用下越容易變形。相互作用隨着1/r6 而變化,誘導力與溫度無關。其公式:α為極化率。

取向力

取向力(orientation force 也稱dipole-dipole force)取向力發生在極性分子與極性分子之間。由於極性分子的電性分布不均勻,一端帶正電,一端帶負電,形成偶極。因此,當兩個極性分子相互接近時,由於它們偶極的同極相斥,異極相吸,兩個分子必將發生相對轉動。這種偶極子的互相轉動,就使偶極子的相反的極相對,叫做「取向」。這時由於相反的極相距較近,同極相距較遠,結果引力大於斥力,兩個分子靠近,當接近到一定距離之後,斥力與引力達到相對平衡。這種由於極性分子的取向而產生的分子間的作用力,叫做取向力。取向力與分子的偶極矩平方成正比,即分子的極性越大,取向力越大。取向力與絕對溫度成反比,溫度越高,取向力就越弱關相互作用隨着1/r6而變化。其公式為:μ1,μ2為兩個分子的偶極矩;r為分子質心間的距離,k為Boltzmann 常數,T為熱力學溫度,負值表示能量降低。

三種力的關係

極性分子與極性分子之間,取向力、誘導力、色散力都存在;極性分子與非極性分子之間,則存在誘導力和色散力;非極性分子與非極性分子之間,則只存在色散力。這三種類型的力的比例大小,決定於相互作用分子的極性和變形性。極性越大,取向力的作用越重要;變形性越大,色散力就越重要;誘導力則與這兩種因素都有關。但對大多數分子來說,色散力是主要的。實驗證明,對大多數分子來說,色散力是主要的;只有偶極矩很大的分子(如水),取向力才是主要的;而誘導力通常是很小的。極化率α反映分子中的電子云是否容易變形。雖然范德華力只有0.4—4.0kJ/mol,但是在大量大分子間的相互作用則會變得十分穩固。比如C—H 在苯中范德華力有7 kJ/mol,而在溶菌酶和糖結合底物范德華力卻有60kJ/mol,范德華力具有加和性。

參考文獻