邱琳檢視原始碼討論檢視歷史
|
邱琳,女,北京科技大學能源與環境工程學院教授。
目錄
人物簡歷
1. 2003年9月-2007年7月,北京科技大學機械工程學院,學士
2. 2007年9月-2012年7月,中國科學院工程熱物理研究所,博士(導師: 唐大偉 研究員)
3. 2012年7月-2016年5月,中國科學院工程熱物理研究所,助理研究員(唐大偉研究員團隊)
4. 2015年3月-2016年3月,美國弗吉尼亞大學機械與航空航天工程系,博士後 (導師: Pamela M. Norris教授)
5. 2016年6月-2021年6月,北京科技大學能源與環境工程學院,副教授(馮妍卉教授團隊)
6. 2016年8月-9月,新加坡南洋理工大學電氣與電子工程學院,訪問學者(合作導師: Beng kang Tay教授)
7. 2017年8月,英國利茲大學化學與過程工程學院,訪問學者(合作導師: Dongsheng Wen教授)
8. 2021年7月至今,北京科技大學能源與環境工程學院,教授(馮妍卉教授團隊)
研究領域
1. 先進材料熱物理性質評價方法及機理研究:包括隔熱、熱障塗層、薄膜材料、複合材料、納米材料等的熱輸運測量技術(3ω技術、Raman技術、SThM技術)、數值模擬開發及微觀機理解析等;
2. 熱管理用納米碳材料研發:碳纖維、碳納米管及由其組裝成的複合材料的熱、電性能表徵,基於碳納米管陣列、纖維的熱管理器件設計及開發;
3. 相變蓄熱新應用:相變微膠囊傳蓄熱表徵,熱存儲及釋放過程數值模擬,高溫蓄熱用金屬基相變材料微膠囊化開發。
獲獎情況
1. 2022年,國家優秀青年科學基金獲得者
2. 2020年,入選「北京市科技新星計劃」
3. 2022年,入選「能源與環境青年人才培養計劃」
4. 2020年,北京科技大學優秀碩士學位論文指導教師
5. 2021年,北京科技大學優秀碩士學位論文指導教師
6. 2021年,「有色金屬智庫杯」冶金優秀青年支撐計劃三等獎
7. 2021年, Engineered Science Publisher「Best Paper Award」
學術任職
1. 期刊副主編:Review of Scientific Instruments
2. 期刊編委: Scientific Reports、Carbon、Applied Thermal Engineering
3. 客座編輯: Energy、Journal of Building Engineering、Journal of Thermal Science、Applied Sciences、Materials
4. 分會主席:The 8th Asian Symposium on Computational Heat Transfer and Fluid Flow-2021
5. 第7屆國際微納技術會議學術委員會委員(2019/4/26-27)
6. 中國高等教育學會工程熱物理專業委員會理事
7. 北京熱物理與能源工程學會青年工作委員會委員
8. 國家自然科學基金通信評審專家
9. 中國博士後科學基金評審專家
10. 天合科技成果市場轉化成熟度評價系統評價師
11. 「中國鋼鐵工業協會低碳工作推進委員會」專家庫成員
教學項目
1. 北京科技大學研究生教育教材建設項目, 「《材料熱物性及導熱分析》講義」, 1萬, 2022.3-2023.12(主持)
2. 北京科技大學研究生教育教學改革項目, 「研究生《材料熱物性及導熱分析》課程改革與探索」(No. 2022JGC029), 2萬, 2021.10-2023.10(主持)
3. 北京科技大學規劃教材(講義)項目, 「Fundamentals of Thermal Engineering」 (No. JC2022YB013), 3萬, 2022.4-2024.6(主持)
4. 2021年高等學校能源動力類教學研究與實踐項目一般項目, 「熱工學課程學研用協同育人教學模式探索」 (No. NSJZW2021Y-90), 2022.2-2024.1(主持)
5. 北京科技大學國際學生全英文授課課程建設項目, 「熱工基礎」 (No. GYW2021023), 5萬, 2021.9-2023.7(主持)
6. 北京科技大學全英文教學示範課程建設項目, 「熱工學」 (No. KC2020QYW03), 3萬, 2020.9-2022.7(主持)
7. 北京科技大學本科教育教學改革與研究面上項目, 「機械專業熱工學課程產學研用協同育人教學模式探索」 (No. JG2018M17), 2萬, 2018.7-2020.7(主持)
8. 北京科技大學課程思政特色示範課程建設項目, 「熱工學」 (No. KC2021SZ34), 1萬, 2021.4-2022.5(參與, 承擔0.1萬)
科研項目
1. 北京科技大學青年教師學科交叉研究滾動項目, 「高導熱sp2-sp3雜化界面結構熱輸運機制研究」 (No. FRF-IDRY-GD21-004), 20萬, 2022.1.1-2023.12.31(主持)
2. 國家級外專項目, 「中低溫陶瓷基複合相變材料熱測量和熱輸運機理」 (No. G2021105022L), 30萬, 2021.1.1-2022.12.31(主持)
3. 北京科技大學青年教師國際交流成長計劃項目, 「中高溫陶瓷基複合相變材料熱測量和熱輸運機理」 (No. QNXM20210032), 8萬, 2021.5.14-2021.12.31(主持)
4. 北京市科技新星計劃項目, 「基於柔性探測器的皮膚體徵熱物性監測及健康診療」 (No. Z201100006820065), 40萬, 2020.9.1-2023.8.31(主持)
5. 北京科技大學青年教師學科交叉研究培育項目, 「超高導熱金剛石/石墨烯複合材料界面熱輸運性能研究」 (No. FRF-IDRY-19-004), 10萬, 2020.1.1-2020.12.31(主持)
6. 北京市自然科學基金面上項目, 「超高導熱碳納米管/石墨烯組裝膜材料研究」 (No. 3202020), 20萬, 2020.1.1-2022.12.31(主持)
7. 國家自然科學基金面上項目, 「纖維形狀記憶複合材料熱增強的界面調控」 (No. 51876008), 62萬, 2019.1.1-2022.12.31(主持)
8. 國家重點研發計劃子課題, 「基於CFD-DEM的移動床氣固兩相流動換熱機理研究」 (No. 2017YFB0603603), 90萬, 2017.7.1-2020.6.30(主持)
9. 北京科技大學高水平拔尖人才引進計劃, 「導熱可控的碳納米管微納熱管理器件效能優化」, 30萬, 2016.7.1-2019.6.30(主持)
10. 國家自然科學基金青年項目, 「納米顆粒/碳納米管複合纖維的熱輸運機理研究」 (No. 51306183), 25萬, 2014.1.1-2016.12.31(主持)
11. 橫向項目, 「中關村科技園區發展專項資金」, 50萬, 2014.1.1-2015.6.30(主持)
12. 橫向項目, 「熱物性測試服務及儀器開發項目」, 157.6408萬, 2012.9.1-2023.2.7(主持)
13. 橫向項目, 「華為有限公司委託」, 149.35萬, 2022.5.7-2023.8.6(主持)
14. 橫向項目, 「先進能源科學與技術廣東省實驗室委託」, 30萬, 2022.6.21-2022.12.31(主持)
15. 國家重點研發計劃課題, 「等級孔及複合結構聲子波傳遞機理及協同調控強化方法」 (No. 2018YFA0702302), 257萬, 2019.9.1-2024.8.31(參與, 承擔¥70萬)
16. 北京市科學技術委員會, 「2018年度科技創新基地培育與發展工程專項實施方案」, 100萬, 2018.9 -2020.3(參與, 承擔¥3萬)
17. 橫向項目—航天材料及工藝研究所, 「複合相變材料熱物性仿真優化分析」, 40萬, 2018.8 -2019.12(參與, 承擔¥10萬)
18. 國家自然科學基金重點項目, 「飛秒、納米時/空尺度熱輸運機理研究」 (No. 51336009), 300萬, 2014.1.1-2018.12.31(參與, 承擔¥40萬)
19. 國家重大科學研究計劃(973)課題, 「微納米材料結構、熱傳遞表徵新方法及傳熱基本規律」 (No. 2012CB933204), 579萬, 2011.9.1-2015.8.31.(參與, 承擔¥40萬)
20. 國家重大科學研究計劃(973)子課題, 「相變微膠囊傳蓄熱研究」, 56萬, 2012.1.1-2013.12.31(參與, 承擔8萬)
21. 國家自然科學基金面上項目, 「導熱增強相變溫控複合系統效能優化研究」 (No. 51576192), 76.8萬, 2016.1.1-2019.12.31(參與, 承擔5萬)
22. 橫向項目—中國航空工業集團公司, 「大功率T/R芯片強化散熱技術研究」, 100萬, 2014.1.1-2016.12.31(參與, 承擔5萬)
23. 中國科學院儀器設備功能開發技術創新項目, 「具有獨立探測器的諧波探測技術可移植化研究」 (No. yg2012022), 30萬, 2012.9.1-2014.8.31(副組長, 承擔5萬)
24. 橫向項目—航天材料及工藝研究所, ¥160萬, 「相變溫控複合材料性能匹配及溫控效能優化」, 2012.1.1-2014.12.31(參與, 承擔5萬)
25. 863計劃, 「 ××導熱技術」, ¥65萬, 2012.7.1-2013.12.31(參與, 承擔5萬)
26. 英國皇家化學會(RS)國際交流項目, 「Engineered nanoparticle-carbon nanotube fibres with programmable properties」, £12,000, 2016.3.1-2018.2.28(海外合作申請者)
專利
1. 邱琳,鄭興華,李大慶,唐大偉. 「雙螺旋平面結構諧波法測試材料熱物性參數的裝置」. 發明專利, 中國, ZL 201410078886.1, 2016年6月1日授權
2. 邱琳, 鄭興華, 徐先鋒, 李蘭蘭, 唐大偉. 「測試材料熱物性參數的裝置及方法」. 發明專利, 中國, ZL 201310032893.3, 2016年2月24日授權
3. 邱琳, 徐先鋒, 唐大偉, 祝捷, 布文峰. 「測量固體熱物性參數的光學系統及方法」. 發明專利, 中國, ZL 201210476747.5, 2014年8月20日授權
4. 邱琳, 鄭興華, 唐大偉. 「用於吸熱係數測量的測量裝置及測量方法」. 發明專利, 中國, ZL 201210258346.2, 2014年4月9日授權
5. 邱琳, 馮妍卉, 張欣欣, 張真, 鄒瀚影. 「製備高純度高導熱碳納米管陣列熱界面材料的方法及裝置」. 發明專利, 中國, ZL 201611126343.8, 2018年6月1日授權
6. 邱琳, 唐大偉, 馮妍卉, 張欣欣. 「節能隔熱材料熱導率現場精確測試的裝置及方法」. 發明專利, 中國, ZL 201610580315.7, 2018年9月14日授權
7. 邱琳, 閆可寧, 馮妍卉, 張欣欣. 「一種測量寬溫域材料熱導率的裝置及方法」. 發明專利, 中國, ZL 202110134103.7, 2021年10月22日授權
8. 鄭興華, 邱琳, 唐大偉. 「基於獨立型傳感器的諧波法測量材料蓄熱係數裝置及方法」. 發明專利, 中國, ZL 201110138899.X, 2013年2月13日授權
9. 鄭興華, 邱琳, 蘇國萍, 唐大偉. 「諧波法單根導電絲狀材料熱物性測試方法及裝置」. 發明專利, 中國, ZL 201010141035.9, 2012年10月31日授權
10. 鄭興華, 邱琳, 蘇國萍, 唐大偉. 「諧波法微/納米薄膜熱物性測試方法」. 發明專利, 中國, ZL 201010218390.1, 2012年6月27日授權
11. 鄭興華, 邱琳, 唐大偉. 「具有獨立探頭的諧波法固體材料熱物性測試方法及裝置」. 發明專利, 中國, ZL 200910242362.0, 2011年10月5日授權
12. 鄭興華, 岳鵬, 李玉華, 邱琳, 唐大偉. 「抗重力型螺旋盤管式非相變取熱裝置」. 發明專利, 中國, ZL 201410194345.5, 2017年8月25日授權
13. 鄭興華, 蘇國萍, 唐大偉, 邱琳. 「用於各向異性材料導熱係數和熱擴散率的測定方法」. 發明專利, 中國, ZL 201010201486.7, 2013年5月8日授權
14. 邱琳,歐陽裕新,馮妍卉,張欣欣. 「一種材料三維各向異性熱導率無損測量裝置」 . 實用新型專利, 中國, ZL 20181692160.7, 2019年5月31日授權
15. 邱琳, 馮妍卉, 張欣欣, 張真, 鄒瀚影. 「一種高純度高導熱碳納米管陣列熱界面材料製備裝置」. 實用新型專利, 中國, ZL 201621345714.7, 2017年6月27日授權
16. 邱琳, 鄭興華, 唐大偉. 「貼面式傳感器及測量裝置」. 實用新型專利, 中國, ZL 201220360421.1, 2013年2月13日授權
17. 鄭興華, 邱琳, 唐大偉. 「具有獨立探頭的諧波法固體材料熱物性測試裝置」. 實用新型專利, 中國, ZL 200920277780.9, 2010年7月28日授權
18. 鄭興華, 岳鵬, 李玉華, 邱琳, 唐大偉. 「抗重力型螺旋盤管式非相變取熱裝置」. 實用新型專利, 中國, ZL 201420237565.7, 2014年9月24日授權
軟件著作權
[1] 邱琳, 王剛, 鄭興華, 唐大偉 (2014). 「流體及粉體熱物性參數測量軟件(版本號: 1.0.0)」. 計算機軟件著作權, 中國, 登記號: 2014R11S010727, 證書號:軟著登字第0697571號, 3月10日登記
學術成果
教材
1.傳熱傳質學英文教材《Heat and Mass Transfer: Fundamentals & Applications》,高等教育出版社,2020年6月(參編)
2.十一五國家級規劃教材《熱能與動力工程專業實習教程》,機械工業出版社,2010年6月(參編)
著作
1. Lin Qiu, Yanhui Feng, Micro and Nano Thermal Transport: Characterization, Measurement, and Mechanism, Academic Press, London, 2022, ISBN: 9780128235393.
2. Lin Qiu, Xinghua Zheng, Meng Liu, Peng Yue, Dawei Tang, 「Chapter 4: Heat Conduction and Heat Storage Characterizations of Phase-Change Microcapsules.」 Phase Change Materials: Characteristics, Industrial Applications and Energy Implications, Nova Science Publisher, New York, pp. 103-120, 2015, ISBN: 978-1-63482-702-7.
3. 鄭興華, 祝捷, 邱琳, 唐大偉. 「第2章: 微納結構材料的熱物理性能表徵.」 熱能調控微納結構材料, 科學出版社, 北京, pp. 24-87, 2014, ISBN: 978-7-03-041001-6.
論文
1. 邱琳, 陳文璨, 馮妍卉, 尹少武, 張欣欣. 機械專業熱工學課程產學研用協同育人模式的探索. 高等工程教育研究, 2019, S1, 276-279. (CSSCI)
科研論文
[1] Lin Qiu, Ning Zhu, Yanhui Feng*, Efstathios E. Michaelides, Gaweł Żyła, Dengwei Jing, Xinxin Zhang, Pamela M. Norris, Christos N. Markides, Omid Mahian*. A review of recent advances in thermophysical properties at the nanoscale: From solid state to colloids. Physics Reports-Review Section of Physics Letters, 2020, 843, 1-81. [Full Text Link] (SCI, ESI熱點&高被引論文, IF=25.809)
[2] Lin Qiu, Xiaohua Zhang*, Zhixin Guo, Qingwen Li. Interfacial heat transport in nano-carbon assemblies. Carbon, 2021, 178, 391-412. [Full Text Link] (SCI, IF=8.821)
[3] Lin Qiu, Pu Guo, Qinyu Kong, Chong Wei Tan, Kun Liang, Jun Wei, Ju Nie Tey, Yanhui Feng*, Xinxin Zhang, Beng Kang Tay*. Coating-boosted interfacial thermal transport for carbon nanotube array nano-thermal interface materials. Carbon, 2019, 145, 725-733. [Full Text Link] (SCI, IF=8.821)
[4] Lin Qiu, Pu Guo, Xueqin Yang, Yuxin Ouyang, Yanhui Feng*, Xinxin Zhang, Jingna Zhao, Xiaohua Zhang*, Qingwen Li. Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon, 2019, 145, 650-657. [Full Text Link] (SCI, IF=8.821)
[5] Lin Qiu, Hanying Zou, Xiaotian Wang, Yanhui Feng*, Xinxin Zhang, Jingna Zhao, Xiaohua Zhang*, Qingwen Li. Enhancing the interfacial interaction of carbon nanotubes fibers by Au nanoparticles with improved performance of the electrical and thermal conductivity. Carbon, 2019, 141, 497-505. [Full Text Link] (SCI, ESI高被引論文, IF=8.821)
[6] Lin Qiu, Kimberly Scheider, Suhaib Abu Radwan, LeighAnn Sarah Larkin, Christopher Blair Saltonstall, Yanhui Feng*, Xinxin Zhang, Pamela M. Norris*. Thermal transport barrier in carbon nanotube array nano-thermal interface materials. Carbon, 2017, 120, 128-136. [Full Text Link] (SCI, IF=8.821)
[7] Lin Qiu, Xiaotian Wang, Dawei Tang*, Xinghua Zheng*, Pamela M. Norris, Dongsheng Wen, Jingna Zhao, Xiaohua Zhang, Qingwen Li. Functionalization and densification of inter-bundle interfaces for improvement in electrical and thermal transport of carbon nanotube fibers. Carbon, 2016, 105, 248-259. [Full Text Link] (SCI, IF=8.821)
[8] Lin Qiu, Xinghua Zheng*, Jie Zhu, Guoping Su, Dawei Tang. The effect of grain size on the lattice thermal conductivity of an individual polyacrylonitrile-based carbon fiber. Carbon, 2013, 51, 265-273. [Full Text Link] (SCI, IF=8.821)
[9] Lin Qiu*, Kening Yan, Yanhui Feng*, Xianglei Liu, Xinxin Zhang. Bionic hierarchical porous aluminum nitride ceramic composite phase change material with excellent heat transfer and storage performance. Composites Communications, 2021, 27, 100892. [Full Text Link] (SCI, IF=6.617)
[10]Lin Qiu, Yuxin Ouyang, Yanhui Feng*, Xinxin Zhang. Review on micro/nano phase change materials for solar thermal applications. Renewable Energy, 2019, 140, 513-538. [Full Text Link] (SCI, ESI熱點&高被引論文, IF=6.274)
[11]Lin Qiu, Yanli Li, Yanhui Feng*, Zegui Chen, Xinxin Zhang. Three-dimensional fluid-solid coupling heat transfer simulation based on multireference frame for side-blown aluminum annealing furnace. Engineering Applications of Computational Fluid Mechanics, 2019, 13(1), 1036-1048. [Full Text Link] (SCI, IF=5.8)
[12]Lin Qiu*, Sida Wang, Ziyang Wang, Yuhao Ma, Yanhui Feng*. Conformal sensor-based harmonic wave technique for in-vivo non-invasive monitoring skin water content. International Journal of Heat and Mass Transfer, 2022, 197, 123328. [Full Text Link] (SCI, IF=4.947)
[13]Lin Qiu*, Fengcheng Li*, Ning Zhu, Yanhui Feng*, Xinxin Zhang, Xiaohua Zhang*. Elaborate manipulation on CNT intertube heat transport by using a polymer knob. International Journal of Heat and Mass Transfer, 2022, 184, 122280. [Full Text Link] (SCI, IF=4.947)
[14] Lin Qiu*, Yuxin Ouyang, Yanhui Feng*, Xinxin Zhang, Xiaotian Wang*. In vivo skin thermophysical property testing technology using flexible thermosensor-based 3ω method. International Journal of Heat and Mass Transfer, 2020, 163, 120550. [Full Text Link] (SCI, IF=4.947)
[15] Lin Qiu*, Ning Zhu, Yanhui Feng*, Xinxin Zhang, Xiaotian Wang*. Interfacial thermal transport properties of polyurethane/carbon nanotube hybrid composites. International Journal of Heat and Mass Transfer, 2020, 152, 119565. [Full Text Link] (SCI, IF=4.947)
[16] Lin Qiu, Ning Zhu, Hanying Zou, Yanhui Feng*, Xinxin Zhang, Dawei Tang*. Advances in thermal transport properties at nanoscale in China. International Journal of Heat and Mass Transfer, 2018, 125, 413-433. [Full Text Link] (SCI, IF=4.947)
[17] Lin Qiu*, Dawei Sang, Yanli Li, Yanhui Feng*, Xinxin Zhang. Numerical simulation of gas-solid heat transfer characteristics of porous structure composed of high-temperature particles in moving bed. Applied Thermal Engineering, 2020, 181, 115925. [Full Text Link] (SCI, IF=4.725)
[18] Lin Qiu, Hanying Zou, Dawei Tang, Dongsheng Wen, Yanhui Feng*, Xinxin Zhang. Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Applied Thermal Engineering, 2018, 130, 1004-1011. [Full Text Link] (SCI, IF =4.725)
[19] Lin Qiu, Hanying Zou, Ning Zhu, Yanhui Feng*, Xiaoliang Zhang, Xinxin Zhang. Iodine nanoparticle-enhancing electrical and thermal transport for carbon nanotube fibers. Applied Thermal Engineering, 2018, 141, 913-920. [Full Text Link] (SCI, IF =4.725)
[20] Lin Qiu, Yanhui Feng*, Zegui Chen, Yanli Li, Xinxin Zhang. Numerical simulation and optimization of the melting process for the regenerative aluminum melting furnace. Applied Thermal Engineering, 2018, 145, 315-327. [Full Text Link] (SCI, IF =4.725)
[21]Lin Qiu*, Dawei Sang, Yanhui Feng*, Xinxin Zhang. Experimental study on particle flow characteristics of three-dimensional moving bed. Powder Technology, 2020, 374, 399-408. [Full Text Link] (SCI, IF=4.142)
[22] Lin Qiu, Fengcheng Li, Ning Zhu, Yanhui Feng*, Xiaoliang Zhang*, Xiaohua Zhang*. Broad low-frequency phonon resonance for increased across-tube heat transport. Physical Review B, 2022, 105(16), 165406. [Full Text Link] (SCI, IF=4.036)
[23] Lin Qiu#, Xiaotian Wang#, Guoping Su, Dawei Tang*, Xinghua Zheng*, Jie Zhu, Zhiguo Wang, Pamela M. Norris, Philip D. Bradford, Yuntian Zhu. Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. Scientific Reports, 2016, 6, 21014. [Full Text Link] (SCI, IF=3.998)
[24] Lin Qiu, Dawei Sang, Yanhui Feng*, Haoyan Huang, Xinxin Zhang. Study on heat transfer of process intensification in moving bed reactor based on the discrete element method. Chemical Engineering and Processing - Process Intensification, 2020, 151, 107915. [Full Text Link] (SCI, IF=3.731)
[25] Lin Qiu, Yuxin Ouyang, Yanhui Feng*, Xinxin Zhang, Xiaotian Wang*, Jin Wu*. Thermal barrier effect from internal pore channels on thickened aluminum nanofilm. International Journal of Thermal Sciences, 2021, 162, 106781. [Full Text Link] (SCI, IF=3.476)
[26]Lin Qiu, Xinghua Zheng*, Peng Yue, Jie Zhu, Dawei Tang*, Yajun Dong, Yuelian Peng. Adaptable thermal conductivity characterization of microporous membranes based on freestanding sensor-based 3ω technique. International Journal of Thermal Sciences, 2015, 89(3), 185-192. [Full Text Link] (SCI, IF=3.476)
[27] Lin Qiu, Yanbo Du, Yangyang Bai, Yanhui Feng*, Xinxin Zhang, Jin Wu*, Xiaotian Wang, Caihong Xu. Experimental characterization and model verification of thermal conductivity from mesoporous to macroporous SiOC ceramics. Journal of Thermal Science, 2021, 30(2), 465-476. [Full Text Link] (SCI, IF=1.972)
[28]Lin Qiu, Yuxin Ouyang, Yanhui Feng*, Xinxin Zhang. Note: Thermal conductivity measurement of individual porous polyimide fibers using a modified wire-shape 3ω method. Review of Scientific Instruments, 2018, 89(9), 096112. [Full Text Link] (SCI, IF=1.48)
[29] Lin Qiu, Dawei Tang*, Xinghua Zheng, Guoping Su. The freestanding sensor-based 3ω technique for measuring thermal conductivity of solids: principle and examination. Review of Scientific Instruments, 2011, 82(4), 045106. [Full Text Link] (SCI, IF=1.48)
[30] Lin Qiu, Xinghua Zheng, Jie Zhu, Dawei Tang*. Note: Non-destructive measurement of thermal effusivity of a solid and liquid using a freestanding serpentine sensor-based 3ω technique. Review of Scientific Instruments, 2011, 82(8), 086110. [Full Text Link] (SCI, IF=1.48)
[31] Lin Qiu*, Yuhao Ma, Yuxin Ouyang, Yanhui Feng, Xinxin Zhang. Freestanding flexible sensor based on 3ω technique for anisotropic thermal conductivity measurement of potassium dihydrogen phosphate crystal. Sensors, 2021, 21(23), 7968. [Full Text Link] (SCI, IF=3.576)
[32] Lin Qiu, Xinghua Zheng*, Jie Zhu, Dawei Tang, Shiyong Yang, Aijun Hu, Leilei Wang, Shishi Li. Thermal transport in high-strength polymethacrylimide (PMI) foam insulations. International Journal of Thermophysics, 2015, 36(10), 2523-2534. [Full Text Link] (SCI, IF=0.794)
[33] Lin Qiu, Yongming Li, Xinghua Zheng*, Jie Zhu, Dawei Tang, Jiquan Wu, Caihong Xu. Thermal-conductivity studies of macro-porous polymer-derived SiOC ceramics. International Journal of Thermophysics, 2014, 35(1), 76-89. [Full Text Link] (SCI, IF=0.794)
[34]Lin Qiu, Xinghua Zheng, Guoping Su, Dawei Tang*. Design and application of a freestanding sensor based on 3ω technique for thermal conductivity measurement of solids, liquids and nanopowders. International Journal of Thermophysics, 2013, 34(12), 2261-2275. [Full Text Link] (SCI, IF=0.794)
[35]Yuxin Ouyang#, Lin Qiu#*, Yangyang Bai, Wei Yu, Yanhui Feng*. Synergistical thermal modulation function of 2D Ti3C2 MXene composite nanosheets via interfacial structure modification. iScience, 2022, 25(8), 104825. [Full Text Link] (SCI, IF=6.107)
[36]Qinyu Kong, Lin Qiu*, Yu Dian Lim, Chong Wei Tan, Kun Liang, Congxiang Lu, Beng Kang Tay*. Thermal conductivity characterization of three dimensional carbon nanotube network using freestanding sensor-based 3ω technique. Surface & Coatings Technology, 2018, 345, 105-112. [Full Text Link] (SCI, IF=3.784)
[37]Meng Liu, Lin Qiu*, Xinghua Zheng*, Jie Zhu, Dawei Tang. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation. Journal of Applied Physics, 2014, 116(9), 093503. [Full Text Link] (SCI, IF=2.286)
[38]Guoping Su, Lin Qiu*, Xinghua Zheng*, Zhuohao Xiao, Dawei Tang. Effective thermal conductivity measurement on germanate glass-ceramics employing the 3ω method in high temperature. International Journal of Thermophysics, 2014, 35(2), 336-345. [Full Text Link] (SCI, IF=0.794)
[39]Wei Chen, Lin Qiu*, Shiqiang Liang*, Xinghua Zheng, Dawei Tang. Measurement of thermal conductivities of DMP/CH3OH and DMP/H2O by freestanding sensor-based 3ω technique. Thermochimica Acta, 2013, 560, 1-6. [Full Text Link] (SCI, IF=2.762)
[40]Xinghua Zheng, Lin Qiu*, Peng Yue, Gang Wang, Dawei Tang. 3ω slope comparative method for fluid and powder thermal conductivity measurements. Modern Physics Letters B, 2016, 30(25), 1650322. [Full Text Link] (SCI, IF=1.224)
[41] Xiaoxin Yan, Haibo Zhao, Yanhui Feng*, Lin Qiu*, Lin Lin, Xinxin Zhang, Taku Ohara. Excellent heat transfer and phase transformation performance of erythritol/graphene composite phase change materials. Composite Part B: Engineering, 2022, 228, 109435. [Full Text Link] (SCI, IF=9.078)
[42] Xiaoxin Yan, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Thermal conductivity and phase change characteristics of hierarchical porous diamond/erythritol composite phase change materials. Energy, 2021, 233, 121158. [Full Text Link] (SCI, IF=6.082)
[43]Yanhui Feng*, Zhen Zhang, Lin Qiu*, Xinxin Zhang. Heat recovery process modelling of semi-molten blast furnace slag in a moving bed using XDEM. Energy, 2019, 186, 115876. [Full Text Link] (SCI, IF=6.082)
[44] Hanying Zou, Yanhui Feng*, Lin Qiu*. Excellent heat transfer enhancement of CNT-metal interface by loading carbyne and metal nanowire into CNT. International Journal of Heat and Mass Transfer, 2022, 186, 122533. [Full Text Link] (SCI, IF=4.947)
[45] Hanying Zou, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Thermal conductance control of non-bonded interaction between loaded halogen molecules and carbon nanotubes: A molecular dynamics study. International Journal of Heat and Mass Transfer, 2022, 183, 122216. [Full Text Link] (SCI, IF=4.947)
[46] Wencan Chen, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Scanning thermal microscopy method for thermal conductivity. International Journal of Heat and Mass Transfer, 2020, 154, 119750. [Full Text Link] (SCI, IF=4.947)
[47]Zihan Liu, Yanhui Feng*, Lin Qiu*. Near-field radiation analysis and thermal contact radius determination in the thermal conductivity measurement based on SThM open-loop system. Applied Physics Letters, 2022, 120(12), 113506. [Full Text Link] (SCI, IF=3.791)
[48]Guangpeng Feng, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Pore scale simulation for melting of composite phase change materials considering interfacial thermal resistance. Applied Thermal Engineering, 2022, 212, 118624. [Full Text Link] (SCI, IF=4.725)
[49]Guangpeng Feng, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Evaluation of thermal performance for bionic porous ceramic phase change material using micro-computed tomography and lattice Boltzmann method. International Journal of Thermal Sciences, 2022, 179, 107621. [Full Text Link] (SCI, IF=3.744)
[50]Hanying Zou, Yanhui Feng*, Lin Qiu*, Xinxin Zhang. Effect of the loading amount and arrangement of iodine chains on the interfacial thermal transport of carbon nanotubes: a molecular dynamics study. RSC Advances, 2020, 10(72), 44196-44204. [Full Text Link] (SCI, IF=3.119)
[51]Yanhui Feng*, Hanying Zou, Lin Qiu*, Xinxin Zhang. Size effect on the thermal conductivity of octadecanoic acid: A molecular dynamics study. Computational Materials Science, 2019, 158, 14-19. [Full Text Link] (SCI, IF=2.863)
[52] Peng Han, Xinghua Zheng*, Wenshuo Hou, Lin Qiu*, Dawei Tang. Study on heat storage and release characteristics of multi-cavity structured phase change microcapsules. Phase Transitions, 2015, 88(7), 704-715. [Full Text Link] (SCI, IF=1.004)
[53] Quang N. Pham, LeighAnn S. Larkin, Carina C. Lisboa, Christopher B. Saltonstall, Lin Qiu*, Jennifer D. Schuler, Timothy J. Rupert, Pamela M. Norris. Effect of growth temperature on the synthesis of carbon nanotube arrays and amorphous carbon for thermal applications. Physica Status Solidi A-Applications and Materials Science, 2017, 214(7), 1600852. [Full Text Link] (SCI, IF=1.759)
[54] Jian Yu#, Chao Chen#, Jie Lin*, Xiangyu Meng, Lin Qiu*, Xiaotian Wang*. Amorphous Co(OH)2 nanocages achieving efficient photo-induced charge transfer for significant SERS activity, Journal of Materials Chemistry C, 2022, 10, 1632. [Full Text Link] (SCI, IF= 7.393)
[55] Jian Yu, Jie Lin*, Mo Chen, Xiangyu Meng, Lin Qiu*, Jin Wu*, Guangcheng Xi, Xiaotian Wang*. Amorphous Ni(OH)2 nanocages as efficient SERS substrates for selective recognition in mixtures, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631, 127652. [Full Text Link] (SCI, IF=4.539)
[56] Yanhui Feng*, Zhen Zhang, Jie Gao, Guangpeng Feng, Lin Qiu*, Daili Feng, Xinxin Zhang, Xun Zhu. Research status of centrifugal granulation, physical heat recovery and resource utilization of blast furnace slags. Journal of Analytical and Applied Pyrolysis, 2021, 157, 105220. [Full Text Link] (SCI, IF=3.905)
[57] Hanying Zou, Cheng Chen, Muxi Zha, Kangneng Zhou, Ruoxiu Xiao, Yanhui Feng*, Lin Qiu*, Zhiliang Wang. A neural regression model for predicting thermal conductivity of CNT nanofluids with multiple base fluids. Journal of Thermal Science, 2021, 30, 1908-1916. [Full Text Link] (SCI, IF=1.972)
[58] Jin Wu*, Zixuan Wu, Haojun Ding, Yaoming Wei, Wenxi Huang, Xing Yang, Zhenyi Li, Lin Qiu*, Xiaotian Wang*. Three-dimensional graphene hydrogel decorated with SnO2 for high-performance NO2 sensing with enhanced immunity to humidity. ACS Applied Materials & Interfaces, 2020, 12(2), 2634-2643. [Full Text Link] (SCI, IF=8.758)
[59] Jin Wu*, Zixuan Wu, Haojun Ding, Yaoming Wei, Xing Yang, Zhenyi Li, Boru Yang, Chuan Liu, Lin Qiu*, Xiaotian Wang*. Multifunctional and high-sensitive sensor capable of detecting humidity, temperature, and flow stimuli using an integrated microheater. ACS Applied Materials & Interfaces, 2019, 11(46), 43383-43392. [Full Text Link] (SCI, IF=8.758)
[60] Jin Wu*, Zixuan Wu, Haojun Ding, Yaoming Wei, Wenxi Huang, Xing Yang, Zhenyi Li, Lin Qiu*, Xiaotian Wang*. Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sensors and Actuators B: Chemical, 2020, 305, 127445. [Full Text Link] (SCI, ESI高被引論文, IF=7.1)
[61] Jin Wu*, Zixuan Wu, Haojun Ding, Xing Yang, Yaoming Wei, Mingquan Xiao, Ziqi Yang, Bo-Ru Yang, Chuan Liu, Xing Lu, Lin Qiu*, Xiaotian Wang*. Three-dimensional-structured Boron- and Nitrogen-doped graphene hydrogel enabling high-sensitivity NO2 detection at room temperature. ACS Sensors, 2019, 4(7), 1889-1898. [Full Text Link] (SCI, IF=7.333)
[62] Yuanhui Sun, Lin Qiu, Liangpo Tang, Hua Geng, Hanfu Wang, Fengjiao Zhang, Dazhen Huang, Wei Xu*, Peng Yue, Ying-shi Guan, Fei Jiao, Yimeng Sun, Dawei Tang, Chong-an Di, Yuanping Yi*, Daoben Zhu*. Flexible n-type high-performance thermoelectric thin films of poly(nickle-ethylenetetrathiolate) prepared by an electrochemical method. Advanced Materials, 2016, 28(17), 3351-3358. [Full Text Link] (SCI, IF=27.398)
[63] Jiaojiao Wang, Jingna Zhao, Lin Qiu, Fengcheng Li, Changle Xu, Kunjie Wu, Pengfei Wang, Xiaohua Zhang*, Qingwen Li*. Shampoo assisted aligning of carbon nanotubes toward strong, stiff and conductive fibers. RSC Advances, 2020, 10, 18715. [Full Text Link] (SCI, IF=3.119)
[64] Daili Feng, Yanhui Feng*, Lin Qiu, Pei Li, Yuyang Zang, Hanying Zou, Zepei Yu, Xinxin Zhang. Review on nanoporous composite phase change materials: Fabrication, characterization, enhancement and molecular simulation. Renewable and Sustainable Energy Reviews, 2019, 109, 578-605. [Full Text Link] (SCI, IF=12.11)
[65]Xinghua Zheng*, Lin Qiu, Guoping Su, Dawei Tang, Yuchao Liao, Yunfa Chen. Thermal conductivity and thermal diffusivity of SiO2 nanopowder. Journal of Nanoparticle Research, 2011, 13(12), 6887-6893. [Full Text Link] (SCI, IF=2.132)
[66]Cheng Chen, Mingan Yu, Lin Qiu, Hongyu Chen, Zhenlong Zhao, Jie Wu, Lili Peng, Zhiliang Wang, Ruoxiu Xiao*, Theoretical evaluation of microwave ablation applied on muscle, fat and bone: A numerical study. Applied Sciences, 2021, 11(17), 8271. [Full Text Link] (SCI, IF=2.679)
[67]Guoping Su, Xinghua Zheng*, Lin Qiu, Dawei Tang*, Jie Zhu. Measurement of thermal conductivity of anisotropic SiC crystal. International Journal of Thermophysics, 2013, 34(12), 2334-2342. [Full Text Link] (SCI, IF=0.794)
[68]Gangtao Zhao*, Xiaohui Xu, Lin Qiu, Xinghua Zheng, Dawei Tang. Study on the heat conduction of phase-change material microcapsules. Journal of Thermal Science, 2013, 22(3), 257-260. [Full Text Link] (SCI, IF=1.972)
[69]Jiajia Zhang, Guangjie Song, Lin Qiu, Yanhui Feng, Jie Chen, Jie Yan, Liyao Liu, Xing Huang, Yutao Cui, Yimeng Sun, Wei Xu*, Daoben Zhu*. Highly conducting polythiophene thin films with less ordered microstructure displaying excellent thermoelectric performance. Macromolecular Rapid Communications, 2018, 39(13), 1800283. [Full Text Link] (SCI, IF=4.886)
[70]Yanhui Feng*, Daili Feng, Fuqiang Chu, Lin Qiu, Fangyuan Sun, Lin Lin, Xinxin Zhang. Thermal design frontiers of nano-assembled phase change materials for heat storage. Acta Physica Sinica, 2022, 71(1), 016501. [Full Text Link] (SCI, IF=0.819)
[71]Zhehao Li*, Yuelian Peng*, Yajun Dong, Hongwei Fan, Ping Chen, Lin Qiu, Qi Jiang. Effects of thermal efficiency in DCMD and the preparation of membranes with low thermal conductivity. Applied Surface Science, 2014, 317(30), 338-349. [Full Text Link] (SCI, IF=6.182)
[72]Peng Yue, Lin Qiu*, Xinghua Zheng, Dawei Tang. The effective thermal conductivity of porous polymethacrylimide foams. Key Engineering Materials, 2014, 609-610, 196-200. [Full Text Link] (EI)
[73]邱琳, 李艷麗, 馮妍卉*, 張欣欣. 多粒徑高爐渣在移動床內餘熱回收的數值模擬. 工程熱物理學報, 2019, 40(10), 2407-2414. [Full Text Link] (EI)
[74]邱琳, 郭璞, 馮妍卉*, 張欣欣. 納米塗層增強碳納米管陣列界面熱輸運. 工程熱物理學報, 2019, 40(9), 2109-2114. [Full Text Link] (EI)
[75]邱琳, 桑大偉, 馮妍卉*, 龔亦輝, 張欣欣. 高爐熔渣流化床餘熱回收的優化分析. 工程熱物理學報, 2019, 40(5), 1086-1094. [Full Text Link] (EI)
[76] 邱琳, 桑大偉, 馮妍卉*, 楊安, 張欣欣. 漏斗形移動床內顆粒運動特性分析. 工程熱物理學報, 2018, 39(12), 2708-2713. [Full Text Link] (EI)
[77] 邱琳, 郭璞, 鄒瀚影, 馮妍卉*, 張欣欣, 張驍驊, 趙靜娜, 李清文. 碳納米管纖維的界面設計及熱/電輸運調控. 工程熱物理學報, 2018, 39(6), 1344-1348. [Full Text Link] (EI)
[78] 邱琳, Kimberly Scheider, Suhaib Abu Radwan, LeighAnn Sarah Larkin, Christopher Blair Saltonstall, 馮妍卉*, 張欣欣,Pamela M. Norris. 面向熱界面應用的多壁碳納米管陣列生長優化. 工程熱物理學報, 2017, 38(6), 1323-1327. [Full Text Link] (EI)
[79] 邱琳, 鄭興華*, 岳鵬, 唐大偉, 曹麗莉, 鄧元. 碲化鉍取向納米柱狀薄膜熱導率測量. 工程熱物理學報, 2015, 36(4), 816-819. [Full Text Link] (EI)
[80]邱琳, 鄭興華*, 唐大偉, 周文斌, 解思深. 碳納米管纖維及薄膜的熱導率和熱擴散率研究. 工程熱物理學報, 2014, 35(4), 718-721. [Full Text Link] (EI)
[81]邱琳, 鄭興華, 蘇國萍, 唐大偉. 具有獨立探頭的3ω技術測量固體熱導率. 工程熱物理學報, 2011, 32(4), 621-624. [Full Text Link] (EI)
[82]邱琳, 鄭興華, 李謙, 唐大偉*, 錢楊保, 張偉剛. 陶瓷熱障塗層的熱導率和熱擴散率測量. 功能材料, 2010, 41(S2), 264-267. [Full Text Link] (EI)
[83]曹運濤, 邱琳*, 鄭興華, 唐大偉, 朱群志, 裴振洪. 3ω微型探測器用於固體材料熱導率的測量. 工程熱物理學報, 2016, 37(4), 803-806. [Full Text Link] (EI)
[84]鄭興華,邱琳*, 李蘭蘭, 岳鵬, 王剛, 唐大偉. 相變微膠囊的吸熱係數測量. 工程熱物理學報, 2013, 34(9), 1692-1694. [Full Text Link] (EI)
[85]李峰誠, 原曉蘆, 邱琳*, 劉金龍, 馮妍卉, 張欣欣. 金剛石襯底原位生長石墨烯的複合結構熱輸運. 工程熱物理學報, 2021, 42(10), 2642-2648. [Full Text Link] (EI)
[86]陳文璨, 馮妍卉, 邱琳*, 張欣欣. 納米顆粒熱導率的掃描熱顯微鏡方法研究. 工程熱物理學報, 2020, 41(12), 3036-3040. [Full Text Link] (EI)
[87]閆曉鑫, 馮妍卉*, 邱琳*, 張欣欣. 赤蘚糖醇/碳納米管複合相變材料熱特性模擬研究. 工程科學學報, 2022, 44(4), 722-729. [Full Text Link] (EI)
[88]鄭興華, 邱琳, 祝捷, 蘇國萍, 唐大偉. 相變微膠囊的熱導率測量. 工程熱物理學報, 2012, 33(3), 454-456. [Full Text Link] (EI)
[89]鄭興華, 邱琳, 蘇國萍, 唐大偉. 利用3ω法測量納米SiO2粉末熱導率及熱擴散率. 工程熱物理學報, 2011, 32(S1), 190-193. [Full Text Link] (EI)
[90]鄒瀚影, 馮妍卉*, 邱琳, 張欣欣. 金納米顆粒修飾碳納米管熱輸運機制研究. 工程熱物理學報, 2019, 40(7), 1637-1641. [Full Text Link] (EI)
[91]鄒瀚影, 馮妍卉*, 邱琳, 張欣欣. 十八烷酸熱傳導機制的尺度效應研究. 化工學報, 2019, 70(S2), 155-160. [Full Text Link] (EI)
[92]蘇國萍, 唐大偉, 鄭興華, 邱琳, 杜景龍. 3ω方法測量各向異性SiC晶體的導熱係數. 工程熱物理學報, 2011, 32(11), 1885-1888. [Full Text Link] (EI)[1]