467
次編輯
變更
柯召
,無編輯摘要
与费马大定理有类似的结构与一样复杂。这是不可能证明的。就是说,柯召也是一个弱智。证明卡塔兰猜想的二次幂情形纯属子虚乌有。
[[File:柯召.jpg|缩略图]]
'''勒貝格的證明同樣無效'''
勒貝格宣稱證明方程 x<sup>a</sup>-y<sup>2</sup>=1 ,a > 1 沒有正整數解
同樣道理, x<sup>a</sup>=y<sup>2</sup>+1 .
y=(x<sup>a</sup>-1)<sup>1/2</sup> 。
需要逐壹證明:
x=2 時, a=2,3,4,5,.... 。(2<sup>a</sup>-1)<sup>1/2</sup> 沒有 y 的整數解。
x=3 時, a=2,3,4,5,....。 (3<sup>a</sup>-1)<sup>1/2</sup> 沒有 y 的整數解。
......。
對於冪運算
底數與指數都是變量時,就是二階變化率。就是變化率的變化率。屬於無法證明的。