42,257
次編輯
變更
玻尔兹曼
,無編輯摘要
当时多数物理学家并不像他一样深信原子和分子的切实存在。而苏格兰的詹姆斯·克拉克·麦克斯韦和美国的约西亚·吉布斯,以及自约翰·道尔顿1808提出原子论来的大多数化学家却深信原子和分子的存在。玻尔兹曼和当时德国首级的物理学刊物的编辑进行了旷日持久的争论。这些编辑只是将原子和分子当作方便的理论模型而并不愿将它们与现实联系起来。在玻尔兹曼去世后数年,让·佩兰在阿尔伯特·爱因斯坦1905年的研究基础上对于胶体悬浮物的研究(1908–1909),测定了阿伏伽德罗常量和玻尔兹曼常数,并向世界证明了原子和分子确实存在。
玻尔兹曼还在分子运动论中发现了熵和微观状态的概率分布的对数关系,并提出著名的玻尔兹曼熵公式:
'''S=KʙInW'''
其中k = 1.3806505(24) × 10−23 J |K−1,称作玻尔兹曼常数。是德语中概率(Wahrscheinlichkeit)的缩写,,这里,更准确地说,是系统的微观状态数。玻尔兹曼的范式是有N个分子的理想气体,Ni是分子位置和动量的第i个微观状态。
玻尔兹曼由于他在1877年暗示一个物理学系统的能级离散成为量子力学的先驱。
玻尔兹曼方程
{| class="wikitable"
|-
! 标题文字 !! 标题文字 !! 标题文字
|-
| 示例 || 示例 || 示例
|-
| 示例 || 示例 || 示例
|-
| 示例 || 示例 || 示例
|}
玻尔兹曼方程叙述了理想气体系统内部粒子的运动情况。
其中ƒ为分布函数(参见麦克斯韦-玻尔兹曼分布),代表在某一时刻在一位置和具有该动量的粒子数目、密度或发现粒子的概率, F是力(包含相对于所讨论系统的外力与粒子之间的相互作用),m是单个粒子的质量,t是时间,v是具有该动量粒子所拥有的速度。
这个方程描述了粒子位置和动量概率分布在相空间中的密度分布云图随时间和空间的演化(参见哈密尔顿力学)。等式左边第一项代表分布函数随时间的变化,第二项给出随空间的变化,然后第三项描述了某个力对粒子的影响效果。等式右边代表碰撞(collision)的所造成的分布函数的变化(如交换动量或能量)。
从原理上,在适当的边界条件下,这个方程可以描述气体粒子集合体的动态。 这个一阶偏微分方程看起来非常易解, 因为ƒ可以表示任意的单粒子分布函数,并且作用在粒子上的力直接取决于速度分布函数,但却以难以积分著称。大卫·希尔伯特多年努力去解它但却没有获得实质成功。
由玻尔兹曼给出的表示碰撞的项是近似的。但玻尔兹曼方程对于理想气体的恰普曼一恩斯科格(Chapman–Enskog)解却是高度严格的。只有在激波条件下,才有可能得到对于理想气体的错误的解。
玻尔兹曼使用许多年试图利用这个方程证明H定理进而验证热力学第二定律。这之中他做了一个假设——碰撞的项是针对分子混沌的。然而这个假设破坏了时间反演对称,暗示了第二定律的必然成立。所以他在与洛施密特以及其他基于洛施密特佯谬的观点的长期争论中落败。
而在20世纪70年代,E.G.D. Cohen和J.R. Dorfman证明了玻尔兹曼方程对于高密度物质的系统扩展在数学上是不可能的。最终对于稠密气体及液体的非平衡态的统计力学研究焦点已经转移到格林-久保关系(Green-Kubo relations),涨落定理及其他方法。
玻尔兹曼熵公式被镌刻在他维也纳中央墓地的墓碑上。