齊夫定律查看源代码讨论查看历史
齐夫定律 |
---|
|
齐夫定律(Zipf's law,IPA)是由哈佛大學的語言學家喬治·金斯利·齊夫于1949年发表的实验定律。
它可以表述为:在自然语言的語料庫裡,一个单词出现的频率与它在频率表里的排名成反比。所以,频率最高的单词出现的频率大约是出现频率第二位的单词的2倍,而出现频率第二位的单词则是出现频率第四位的单词的2倍。这个定律被作为任何与冪定律概率分布有关的事物的参考。[1]
目录
例子
最简单的齐夫定律的例子是“1/f function”。给出一组齐夫分布的频率,按照从最常见到非常见排列,第二常见的频率是最常见频率的出现次数的½,第三常见的频率是最常见的频率的1/3,第n常见的频率是最常见频率出现次数的1/n。然而,这并不精确,因为所有的项必须出现一个整数次数,一个单词不可能出现2.5次。
在布朗语料库中,“the”、“of”、“and”是出現頻率最前的三個單詞,其出現的頻數分別為69971次、36411次、28852次,大約佔整個語料庫100萬個單詞中的7%、3.6%、2.9%,其比例約為6:3:2。大約佔整個語料庫的7%(100万单词中出现69971次)。满足齐夫定律中的描述。仅仅前135個字彙就佔了Brown語料庫的一半。
齐夫定律是一个实验定律,而非理论定律,可以在很多非语言学排名中被观察到,例如不同国家中城市的数量、公司的规模、收入排名等。但它的起因是一个争论的焦点。齐夫定律很容易用点阵图观察,坐标分别为排名和频率的对数(log)。比如,“the”用上述表述可以描述为x = log(1), y = log(69971)的点。如果所有的点接近一条直线,那么它就遵循齐夫定律。