打开主菜单

求真百科

有理数,指整数可以看作分母为1的分数正整数、0、负整数正分数负分数都可以写成分数的形式,这样的数称为有理数(rational number)。有理数的小数部分是有限或循环小数。不是有理数的实数遂称为无理数

有理数

目录

基本信息

中文名 有理数 [1]

外文名 rational number(英文);λογος(希腊文)

意思 成比例的数,循环有规律的数

分类 整数、分数、小数

名称由来

“有理数”这一名称不免叫人费解,而有理数并不比别的数更“有道理”。事实上,这似乎是一个翻译上的失误。“有理数”一词是从西方传来,在英语中是rational number,而rational通常的意义是“理性的”。[2]

中国在近代翻译西方科学著作时,依据日语中的翻译方法,以讹传讹,把它译成了“有理数”。但是,这个词来源于古希腊,其英文词根为ratio,就是比率的意思(这里的词根是英语中的,希腊语意义与之相同)。所以这个词的意义也很明显,就是整数的“比”。与之相对,“无理数”就是不能精确表示为两个整数之比的数,而并非没有道理。[1]

详细介绍

有理数的认识

有理数为整数和分数的统称。正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。

有理数集是整数集的扩张。在有理数集内,加法、减法、乘法、除法(除数不为零)4种运算通行无阻。

有理数的大小顺序的规定:如果a-b是正有理数,当a大于b或b小于a,记作a>b或b<a。任何两个不相等的有理数都可以比较大小。

有理数集与整数集的一个重要区别是,有理数集是密集的,而整数集不是稠密的。将有理数依大小顺序排定后,任何两个有理数之间必定还存在其他的有理数,这就是稠密性。整数集没有这一特性,两个相邻的整数之间就没有其他的整数了。

有理数是实数的紧密子集:每个实数都有任意接近的有理数。一个相关的性质是,仅有理数可化为有限连分数。依照它们的序列,有理数具有一个序拓扑。有理数是实数的(稠密)子集,因此它同时具有一个子空间拓扑。

有理数及其分类

有理数的分类按不同的标准有以下两种:

(1)按有理数的定义分类:

有理数

整数 正整数 0 负整数 分数 正分数 负分数 (2)按有理数的性质分类:

(2)按有理数的性质分类: 有理数 正有理数 正整数 正分数

负有理数 负整数

负分数

有理数及其运算

有理数及其运算 相关概念 有理数的分类 数轴 相反数 绝对值 倒数 科学计数法 有理数的大小比较 有理数的运算法则 加、减、乘、除

乘方 混合运算 有理数的运算律 交换律 结合律 分配律 可以用计算器进行运算

基本运算

减法运算

减去一个数,等于加上这个数的相反数(符号不同,符号相同的两个数互为相反数,其中一个数叫做另一个数的相反数)。

除法运算

两数相除,同号得正,异号得负,并把绝对值相除。

注意:零除以任意一个不等于零的数,都得零。

零不能做除数和分母。

有理数的除法与乘法是互逆运算。

在做除法运算时,根据同号得正,异号得负的法则先确定符号,再把绝对值相除。若在算式中带有带分数,一般先化成假分数进行计算。若不能整除,则除法运算都转化为乘法运算。

乘法运算

(1)负数的奇数次幂是负数,负数的偶数次幂是正数。例如:(-2)的3次方= -8,(-2)的2次方=4。

(2)正数的任何次幂都是正数,零的任何正数次幂都是零。例如:2的2次方=4,2的3次方=8,0的3次方=0。

(3)零的零次幂无意义。

(4)由于乘方是乘法的特例,因此有理数的乘方运算可以用有理数的乘法运算完成。

(5)任何非0数的0次方都是1。

(6)一个数的负数次方=此数正数次方的倒数。如:5的-2次方=1/25

有理数运算定律

加法运算律:

(1)加法交换律:两个数相加,交换加数的位置,和不变,即a+b=b+a。

(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,

即a+b+c=a+(b+c)。

减法运算律:

(1)减法运算律:减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。

(2)减法结合律:三个数连减,可以先将两个减的数相加,然后再减,差不变,

即:a-b-c=a-(b+c)。

(3)减法交换律:三个数连减,可以调换两个减数的位置,差不变,即:a-b-c

=a-c-b

乘法运算律:

(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即ab=ba。

(2)乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即abc=a(bc)。

(3)乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,

即a(b+c)=ab+ac。

混合运算

有理数的加减乘除混合运算,如无括号指出先做什么运算,按照“先乘除,后加减”的顺序进行,如果是同级运算,则按照从左到右的顺序依次计算,如果有括号则先计算括号内的。

相关问题

除以零的谬误

在代数运算中不当使用除以零可得出无效证明:a=b。前提a不等于b。

由:0a=0,0b=0,得出0a=0b。两边除以零,得出0a/0=0b/0。

化简,得:a=b

以上谬论一个假设,就是某数除以0是容许的,并且0 / 0 = a。

代数处理

若某数学系统遵从域的公理,则在该数学系统内除以零必须为没有意义。这是因为除法被定义为是乘法的逆向操作,即a/b值是方程bx = a中x的解(若有的话)。若设b = 0,方程式bx = a可写成 0x = a或直接 0 = a。因此,方程bx = a没有解(当a ≠ 0时),但x是任何数值也可解此方程(当a = 0时)。在各自情况下均没有独一无二的数值,所以1未能下定义。

虚假的除法

在矩阵代数或线性代数中,可定义一种虚假的除法,设a/b=ab+,当中b代表b的虚构倒数。这样,若b存在,则b = b;若b等于0,则0 = 0。参见广义逆矩阵。

相关信息

整数,是序列{...,-3,-2,-1,0,1,2,3,...}中所有的数的统称,包括负整数、零(0)与正整数。和自然数一样,整数也是一个可数的无限集合。这个集合在数学上通常表示为粗体Z或,源于德语单词Zahlen(意为“数”)的首字母。

在代数数论中,这些属于有理数的一般整数会被称为有理整数,用以和高斯整数等的概念加以区分。

全体整数关于加法和乘法形成一个环。环论中的整环、无零因子环和唯一分解域可以看作是整数的抽象化模型。

Z是一个加法循环群,因为任何整数都是若干个1或 -1的和。1和 -1是Z仅有的两个生成元。每个元素个数为无穷个的循环群都与(Z,+)同构。

參考來源