狀態空間法檢視原始碼討論檢視歷史
狀態空間法是一種基於解答空間的問題表示和求解方法,它是以狀態和操作符為基礎的。在利用狀態空間圖表示時,從某個初始狀態開始,每次加一個操作符,遞增地建立起操作符的試驗序列,直到達到目標狀態為止。由於狀態空間法需要擴展過多的節點,容易出現「組合爆炸」,因而只適用於表示比較簡單的問題。
狀態空間法(state-space techniques )是現代控制理論中建立在狀態變量描述基礎上的對控制系統分析和綜合的方法。狀態變量是能完全描述系統運動的一組變量。如果系統的外輸入為已知,那麼由這組變量的現時值就能完全確定系統在未來各時刻的運動狀態。通過狀態變量描述能建立系統內部狀態變量與外部輸入變量和輸出變量之間的關係。反映狀態變量與輸入變量間因果關係的數學描述稱為狀態方程,而輸出變量與狀態變量和輸入變量間的變換關係則由量測方程來描述。狀態與狀態變量描述的概念早就存在於經典動力學和其他一些領域,但將它系統地應用於控制系統的研究,則是從1960年R.E.卡爾曼發表《控制系統的一般理論》的論文開始的。狀態空間法的引入促成了現代控制理論的建立。
狀態空間法有很多優點。由於採用矩陣表示,當狀態變量、輸入變量或輸出變量的數目增加時,並不增加系統描述的複雜性。狀態空間法是時間域方法,所以很適合於用數字電子計算機來計算。狀態空間法能揭示系統內部變量和外部變量間的關係,因而有可能找出過去未被認識的系統的許多重要特性,其中能控性和能觀測性尤其具有特別重要的意義。研究表明,從系統的結構角度來看,狀態變量描述比經典控制理論中廣為應用的輸入輸出描述(如傳遞函數)更為全面。 狀態空間法的運用對現代控制理論中其他各種方法的發展起了重要的推動作用。線性系統代數理論、線性系統幾何理論和多變量頻域方法,都是在狀態空間法的影響下發展起來的。[1]
視頻
狀態空間表示法