求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

卡爾·弗雷德里希·高斯檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋

約翰·卡爾·弗里德里希·高斯英語Johann Carl Friedrich Gauss拉丁語Carolus Fridericus Gauss,1777年4月30日-1855年2月23日), 德國著名數學家物理學家天文學家、大地測量學家。

高斯生於不倫瑞克,卒於哥廷根,德國著名數學家、物理學家、天文學家、大地測量學家。高斯被認為是最重要的數學家,並擁有「數學王子」的美譽。

1792年,15歲的高斯進入布倫瑞克(Braunschweig)學院。在那裡,高斯開始對高等數學作研究。獨立發現了二項式定理的一般形式、數論上的「二次互反律」(LawofQuadraticReciprocity)、質數分布定理(primenumbertheorem)及算術幾何平均(arithmetic-geometricmean)。

1795年高斯進入哥廷根大學。1796年,19歲的高斯得到了一個數學史上非常重要的結果,就是《正十七邊形尺規作圖之理論與方法》。

1855年2月23日清晨,高斯於睡夢中去世。

生平

高斯是一對普通夫婦的兒子。他的母親是一個貧窮石匠的女兒,雖然十分聰明,但卻沒有接受過教育,近似於文盲。在她成為高斯父親的第二個妻子之前,她從事女傭工作。他的父親曾做過園丁,工頭,商人的助手和一個小保險公司的評估師。當高斯三歲時便能夠糾正他父親的借債賬目的事情,已經成為一個軼事流傳至今。他曾說,他在麥仙翁堆上學會計算。能夠在頭腦中進行複雜的計算,是上帝賜予他一生的天賦。[1]

高斯用很短的時間計算出了小學老師布置的任務:對自然數從1到100的求和。他所使用的方法是:對50對構造成和101的數列求和(1+100,2+99,3+98……),同時得到結果:5050。這一年,高斯9歲。父親格爾恰爾德·迪德里赫對高斯要求極為嚴厲,甚至有些過分,常常喜歡憑自己的經驗為年幼的高斯規劃人生。高斯尊重他的父親,並且秉承了其父誠實、謹慎的性格。

在成長過程中,幼年的高斯主要得力於母親和舅舅:高斯的母親羅捷雅、舅舅弗利德里希(Friederich)。弗利德里希富有智慧,為人熱情而又聰明能幹投身於紡織貿易頗有成就。他發現姐姐的兒子聰明伶利,因此他就把一部分精力花在這位小天才身上,用生動活潑的方式開發高斯的智力。若干年後,已成年並成就顯赫的高斯回想起舅舅為他所做的一切,深感對他成才之重要,他想到舅舅多產的思想,不無傷感地說,舅舅去世使"我們失去了一位天才"。正是由於弗利德里希慧眼識英才,經常勸導姐夫讓孩子向學者方面發展,才使得高斯沒有成為園丁或者泥瓦匠。


在數學史上,很少有人象高斯一樣很幸運地有一位鼎力支持他成才的母親。羅捷雅直到34歲才出嫁,生下高斯時已有35歲了。她性格堅強、聰明賢慧、富有幽默感。高斯一生下來,就對一切現象和事物十分好奇,而且決心弄個水落石出,這已經超出了一個孩子能被許可的範圍。當丈夫為此訓斥孩子時,她總是支持高斯,堅決反對頑固的丈夫想把兒子變得跟他一樣無知。

羅捷雅真地希望兒子能幹出一番偉大的事業,對高斯的才華極為珍視。然而,她也不敢輕易地讓兒子投入當時尚不能養家糊口的數學研究中。在高斯19歲那年,儘管他已做出了許多偉大的數學成就,但他仍向數學界的朋友W.波爾約(W.Bolyai,非歐幾何創立者之一J.波爾約之父)問道:高斯將來會有出息嗎?W.波爾約說她的兒子將是"歐洲最偉大的數學家",為此她激動得熱淚盈眶。

7歲那年,高斯第一次上學了。頭兩年沒有什麼特殊的事情。1787年高斯10歲,他進入了學習數學的班次,這是一個首次創辦的班,孩子們在這之前都沒有聽說過算術這麼一門課程。數學教師是布特納,他對高斯的成長也起了一定作用。

當然,這也是一個等差數列的求和問題。當布特納剛一寫完時,高斯也算完並把寫有答案的小石板交了上去。E.T.貝爾寫道,高斯晚年經常喜歡向人們談論這件事,說當時只有他寫的答案是正確的,而其他的孩子們都錯了。高斯沒有明確地講過,他是用什麼方法那麼快就解決了這個問題。數學史家們傾向於認為,高斯當時已掌握了等差數列求和的方法。一位年僅10歲的孩子,能獨立發現這一數學方法實屬很不平常。貝爾根據高斯本人晚年的說法而敘述的史實,應該是比較可信的。而且,這更能反映高斯從小就注意把握更本質的數學方法這一特點。

高斯7歲那年開始上學。10歲的時候,他進入了學習數學的班級,這是一個首次創辦的班,孩子們在這之前都沒有聽說過算術這麼一門課程。數學教師是布特納,他對高斯的成長也起了一定作用。

一天,老師布置了一道題,1+2+3······這樣從1一直加到100等於多少。

高斯很快就算出了答案,起初高斯的老師布特納並不相信高斯算出了正確答案:"你一定是算錯了,回去再算算。」高斯說出答案就是5050,高斯是這樣算的1+100=101,2+99=101······1加到100有50組這樣的數,所以50X101=5050。

高斯的計算能力,更主要地是高斯獨到的數學方法、非同一般的創造力,使布特納對他刮目相看。他特意從漢堡買了最好的算術書送給高斯,說:「你已經超過了我,我沒有什麼東西可以教你了。」接着,高斯與布特納的助手巴特爾斯建立了真誠的友誼,直到巴特爾斯逝世。他們一起學習,互相幫助,高斯由此開始了真正的數學研究。

1788年,11歲的高斯進入了文科學校,他在新的學校里,所有的功課都極好,特別是古典文學、數學尤為突出。經過巴特爾斯等人的引薦,布倫茲維克公爵召見了14歲的高斯。這位樸實、聰明但家境貧寒的孩子贏得了公爵的同情,公爵慷慨地提出願意作高斯的資助人,讓他繼續學習。布倫茲維克公爵在高斯的成才過程中起了舉足輕重的作用。不僅如此,這種作用實際上反映了歐洲近代科學發展的一種模式,表明在科學研究社會化以前,私人的資助是科學發展的重要推動因素之一。高斯正處於私人資助科學研究與科學研究社會化的轉變時期。

1792年高斯進入布倫茲維克的卡羅琳學院繼續學習。1795年,公爵又為他支付各種費用,送他入德國著名的哥丁根大學,這樣就使得高斯得以按照自己的理想,勤奮地學習和開始進行創造性的研究。1799年,高斯完成了博士論文,回到家鄉布倫茲維克,正當他為自己的前途、生計擔憂而病倒時─雖然他的博士論文順利通過了,已被授予博士學位,同時獲得了講師職位,但他沒有能成功地吸引學生,因此只能回老家-又是公爵伸手救援他。公爵為高斯付諸了長篇博士論文的印刷費用,送給他一幢公寓,又為他印刷了《算術研究》,使該書得以在1801年問世;還負擔了高斯的所有生活費用。所有這一切,令高斯十分感動。他在博士論文和《算術研究》中,寫下了情真意切的獻詞:"獻給大公","你的仁慈,將我從所有煩惱中解放出來,使我能從事這種獨特的研究"。

1806年,公爵在抵抗拿破崙統帥的法軍時不幸陣亡,這給高斯以沉重打擊。他悲痛欲絕,長時間對法國人有一種深深的敵意。大公的去世給高斯帶來了經濟上的拮据,德國處於法軍奴役下的不幸,以及第一個妻子的逝世,這一切使得高斯有些心灰意冷,但他是位剛強的漢子,從不向他人透露自己的窘況,也不讓朋友安慰自己的不幸。人們只是在19世紀整理他的未公布於眾的數學手稿時才得知他那時的心態。在一篇討論橢圓函數的手稿中,突然插入了一段細微的鉛筆字:"對我來說,死去也比這樣的生活更好受些。"

為了不使德國失去最偉大的天才,德國著名學者洪堡(B.A.VonHumboldt)聯合其他學者和政界人物,為高斯爭取到了享有特權的哥丁根大學數學和天文學教授,以及哥丁根天文台台長的職位。1807年,高斯赴哥丁根就職,全家遷居於此。從這時起,除了一次到柏林去參加科學會議以外,他一直住在哥丁根。洪堡等人的努力,不僅使得高斯一家人有了舒適的生活環境,高斯本人可以充分發揮其天才,而且為哥丁根數學學派的創立、德國成為世界科學中心和數學中心創造了條件。同時,這也標誌着科學研究社會化的一個良好開端。

高斯有"數學王子"、"數學家之王"的美稱、被認為是人類有史以來"最偉大的四位數學家之一"(阿基米德牛頓、高斯、歐拉)。人們還稱讚高斯是"人類的驕傲"。天才、早熟、高產、創造力不衰、……,人類智力領域的幾乎所有褒獎之詞,對於高斯都不過分。

高斯開闢了許多新的數學領域,從最抽象的代數數論到內蘊幾何學,都留下了他的足跡。從研究風格、方法乃至所取得的具體成就方面,他都是18─19世紀之交的中堅人物。如果我們把18世紀的數學家想象為一系列的高山峻岭,那麼最後一個令人肅然起敬的巔峰就是高斯;如果把19世紀的數學家想象為一條條江河,那麼其源頭就是高斯。

高斯他幼年時就表現出超人的數學天才。11歲時發現了二項式定理,17歲時發明了二次互反律,18歲時發明了正十七邊形的尺規作圖法,解決了兩千多年來懸而未決的難題,他也視此為生平得意之作,還交待要把正十七邊形刻在他的墓碑上,但後來他的墓碑上並沒有刻上十七邊形,而是十七角星,因為負責刻碑的雕刻家認為,正十七邊形和圓太像了,大家一定分辨不出來。他發現了質數分布定理、算術平均、幾何平均。21歲大學畢業,22歲時獲博士學位。1804年被選為英國皇家學會會員。從1807年到1855年逝世,一直擔任格丁根大學教授兼格丁根天文台長。在成長過程中。幼年的高斯主要是力於母親和舅舅。高斯的外祖父是一位石匠,30歲那年死於肺結核,留下了兩個孩子:高斯的母親羅捷雅、舅舅弗利德里希。

慷慨、仁慈的資助人去世了,因此高斯必須找一份合適的工作,以維持一家人的生計。由於高斯在天文學、數學方面的傑出工作,他的名聲從1802年起就已開始傳遍歐洲。彼得堡科學院不斷暗示他,自從1783年歐拉去世後,歐拉在彼得堡科學院的位置一直在等待着像高斯這樣的天才。公爵在世時堅決勸阻高斯去俄國,他甚至願意給高斯增加薪金,為他建立天文台。

雖然數學研究、科學工作在18世紀末仍然沒有成為令人羨慕的職業,但高斯依然生逢其時,因為在他快步入而立之年之際,歐洲資本主義的發展,使各國政府都開始重視科學研究。隨着拿破崙對法國科學家、科學研究的重視,俄國的沙皇以及歐洲的許多君主也開始對科學家、科學研究刮目相看,科學研究的社會化進程不斷加快,科學的地位不斷提高。作為當時最偉大的科學家,高斯獲得了不少的榮譽,許多世界著名的科學泰斗都把高斯當作自己的老師。1802年,高斯被俄國聖彼得堡科學院選為通訊院士、喀山大學教授;1818年,丹麥政府任命他為科學顧問,這一年,德國漢諾威政府也聘請他擔任政府科學顧問。

當時的天文界正在為火星和木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。在1801年,意大利的天文學家Piazzi,發現在火星和木星間有一顆新星。它被命名為「穀神星」。我們知道它是火星和木星的小行星帶中的一個,但當時天文學界爭論不休,有人說這是行星,有人說這是彗星。必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。高斯這時對這個問題產生興趣,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極準確地預測行星的位置。果然,穀神星準確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」(MethodofLeastSquare)。

1802年,他又準確預測了小行星二號--智神星的位置,這時他的聲名遠播,榮譽滾滾而來,俄國聖彼得堡科學院選他為會員,發現Pallas的天文學家Olbers請他當哥廷根天文台主任,他沒有立刻答應,到了1807年才前往哥廷根就任。

1827年他發表了《曲面的一般研究》,涵蓋一部分大學念的「微分幾何」

1833年高斯從他的天文台拉了一條長八千尺的電線,跨過許多人家的屋頂,一直到韋伯的實驗室,以伏特電池為電源,構造了世界第一個電報機。高斯對自己的工作態度是精益求精,非常嚴格地要求自己的研究成果。他自己曾說:寧可發表少,但發表的東西是成熟的成果。許多當代的數學家要求他,不要太認真,把結果寫出來發表,這對數學的發展是很有幫助的。其中一個有名的例子是關於非歐幾何的發展。非歐幾何的的開山祖師有三人,高斯、洛巴切夫斯基,波爾約。其中波爾約的父親是高斯大學的同學,他曾想試着證明平行公理,雖然父親反對他繼續從事這種看起來毫無希望的研究,小波爾約還是沉溺於平行公理。最後發展出了非歐幾何,並且在1832~1833年發表了研究結果,老波爾約把兒子的成果寄給老同學高斯,想不到高斯卻回信道:我無法誇讚他,因為誇讚他就等於誇獎我自己。早在幾十年前,高斯就已經得到了相同的結果,只是怕不能為世人所接受而沒有公布而已。美國的著名數學家貝爾,在他著的《數學工作者》一書里曾經這樣批評高斯:在高斯死後,人們才知道他早就預見一些十九世的數學,而且在1800年之前已經期待它們的出現。如果他能把他所知道的一些東西泄漏,很可能比當今數學還要先進半個世紀或更多的時間。阿貝爾和雅可比可以從高斯所停留的地方開始工作,而不是把他們最好的努力花在發現高斯早在他們出生時就知道的東西。而那些非歐幾何學的創造者,可以把他們的天才用到其他方面去。

雖然高斯作為一個數學家而聞名於世,但這並不意味着他熱愛教書。儘管如此,他越來越多的學生成為有影響的數學家,如後來聞名於世的戴德金和黎曼。

高斯非常信教且保守。他的父親死於1808年4月14日,晚些時候的1809年10月11日,他的第一位妻子Johanna也離開人世。次年8月4日高斯迎娶第二位妻子FriedericaWilhelmine(1788-1831)。他們又有三個孩子:Eugen(1811-1896),Wilhelm(1813-1883)和Therese(1816-1864)。1831年9月12日他的第二位妻子也死去,1837年高斯開始學習俄語。1839年4月18日,他的母親在哥廷根逝世,享年95歲。高斯於1855年2月23日凌晨1點在哥廷根去世。他的很多散布在給朋友的書信或筆記發現於1898年。

高斯的信仰是基於尋求真理的。他相信「精神個性上的不朽,像是個人在死後的持久性,還有最後命令的東西,以及永恆的、正義的、無所不知和無所不能的上帝。」高斯也堅持宗教的寬容,他相信打擾其他正處在他們自己和平信念中的人是不對的。 他說:」微小的學識使人遠離神,廣博的學識使人接近神。

高斯具有濃厚的宗教感情、貴族的舉止和保守的傾向。他一直遠離他那個時代的進步政治潮流。在高斯身上表現出的矛盾是與他實際上的和諧結合在一起的。高斯身為才氣橫溢的算術家,對於數具有非凡的記憶力。他既是一個深刻的理論家,又是一個傑出的數學實踐家。教學是他最討厭的事,因此他只有少數幾個學生。但他的那些影響數學發展進程的論著(大約155篇)卻使他嘔心瀝血。有3個原則指導他的工作︰他最喜歡說的「少些,但要成熟些」;他的格言「不留下進一步要做的事」;和他的極度嚴格的要求。

從他死後出版的著作中可以看出,他有許多重要和內容廣泛的論文從未發表,因為按他的意見,它們都不符合這些原則。高斯所追求的數學研究題目都是那些他能在其中預見到具有某種有意義聯繫的概念和結果,它們由於優美和普遍而值得稱道。

1849年舉辦了高斯獲博士學位50周年慶祝會,為此高斯準備了他早期對代數基本定理證明的一個新版本。由於健康狀況愈來愈差,這成了他最後的著作。給他帶來最大歡樂和榮譽的還是格丁根市贈與他的榮譽公民頭銜。由於他在數學、天文學、大地測量學和物理學中的傑出研究成就,他被選為許多科學院和學術團體的成員。他謝絕了許多大學請他當教授的邀請而一直留在格丁根大學的院系中,直至直至1855年2月23日逝世。逝世後不久就鑄造了紀念他的錢幣。

數學成就

歐幾里得已經指出,正三邊形、正四邊形、正五邊形、正十五邊形和邊數是上述邊數兩倍的正多邊形的幾何作圖是能夠用圓規和直尺實現的,但從那時起關於這個問題的研究沒有多大進展。高斯在數論的基礎上提出了判斷一給定邊數的正多邊形是否可以幾何作圖的準則。例如,用圓規和直尺可以作圓內接正十七邊形。這樣的發現還是歐幾里得以後的第一個。

這些關於數論的工作對代數數的現代算術理論即代數方程的解法)作出了貢獻。高斯還將複數引進了數論,開創了復整數算術理論,復整數在高斯以前只是直觀地被引進。1831年(發表於1832年)他給出了一個如何藉助於x,y平面上的表示來發展精確的複數理論的詳盡說明。

高斯是最早懷疑歐幾里得幾何學是自然界和思想中所固有的那些人之一。歐幾里得是建立系統性幾何學的第一人。他模型中的一些基本思想被稱作公理,它們是透過純粹邏輯構造整個系統的出發點。在這些公理中,平行線公理一開始就顯得很突出。按照這一公理,通過不在給定直線上的任何點只能作一條與該直線平行的線。

不久就有人推測︰這一公理可從其他一些公理推導出來,因而可從公理系統中刪去。但是關於它的所有證明都有錯誤。高斯是最早認識到可能存在一種不適用平行線公理的幾何學的人之一。他逐漸得出革命性的結論︰確實存在這樣的幾何學,其內部相容並且沒有矛盾。但因為與同代人的觀點相背,他不敢發表(參閱非歐幾里得幾何條)。

當1830年前後匈牙利的波爾約(Janos Bolyai)和俄國的羅巴切夫斯基獨立地發表非歐幾何學時,高斯宣稱他大約在30年前就得到同樣的結論。高斯也沒有發表特殊複函數方面的工作,可能是因為沒有能從更一般的原理導出它們。因此這一理論不得不在他死後數十年由其他數學家從他著作的計算中重建。

1830年前後,極值(極大和極小)原理在高斯的物理問題和數學研究中開始占有重要地位,例如流體保持靜止的條件等問題。在探討毛細作用時,他提出了一個數學公式能將流體系統中一切粒子的相互作用、引力以及流體粒子和與它接觸的固體或流體粒子之間的相互作用都考慮在內。這一工作對於能量守恆原理的發展作出了貢獻。從1830年起高斯就與物理學家威廉·愛德華·韋伯密切合作。由於對地磁學的共同興趣,他們一起建立了一個世界性的系統觀測網。他們在電磁學方面最重要的成果是電報的發展。因為他們的資金有限,所以試驗都是小規模的。

天文發現

1801天文界正在為火星木星間龐大的間隙煩惱不已,認為火星和木星間應該還有行星未被發現。

1801年的元旦,一位意大利天文學家在西西里島觀察到在白羊座(Aries)附近有光度八等的星移動,這顆如今被稱作穀神星(Ceres)的小行星在天空出現了41天,掃過八度角之後,就在太陽的光芒下沒了蹤影。

我們知道它是火星和木星的小行星帶中的一個,當時天文學家無法確定這顆新星是彗星還是行星,必須繼續觀察才能判決,但是Piazzi只能觀察到它9度的軌道,再來,它便隱身到太陽後面去了。因此無法知道它的軌道,也無法判定它是行星或彗星。

高斯也對這顆星着了迷,他決定解決這個捉摸不到的星體軌跡的問題。高斯自己獨創了只要三次觀察,就可以來計算星球軌道的方法。他可以極準確地預測行星的位置。他利用天文學家提供的觀測資料,不慌不忙地算出了它的軌跡。

果然,穀神星準確無誤的在高斯預測的地方出現。這個方法--雖然他當時沒有公布--就是「最小平方法」。在天文學中這一成就立即得到公認。

他在《天體運動理論》(1809)中敘述的方法今天仍在使用,只要稍作修改就能適應現代計算機的要求。高斯在小行星「智神星」方面也獲得類似的成功。考慮到其他行星對智神星軌道的攝動,高斯改進了他的計算。 這時他的聲名遠播,榮譽滾滾而來。自那以後,行星、大行星(海王星)接二連三地被發現了。

1807年他成為格丁根大學的天文學教授和新天文台台長,直到逝世。1809年,在結婚4年後和第三個孩子剛出世不久,他第一個妻子去世。他的第二次婚姻(1810~1831)帶給他兩個兒子和一個女兒。

在1812年,他研究了超幾何級數,並且把研究結果寫成專題論文,呈給哥廷根皇家科學院。

地理測量

1820年前後,高斯把注意力轉向大地測量——用數學方法測定地球表面的形狀和大小。他把很多時間用於大地測量的理論研究和野外工作。

為了增加測量的精確度,他發明了回光儀(一種利用日光以保證比較精確測量的儀器)。他還引進了所謂的高斯誤差曲線,並指出概率如何能用變差的鐘形曲線(一般稱為正態曲線,它是刻畫數據統計分布的基礎)來表示。

他還對透過實際的大地測量確定地球形狀感興趣,這個工作使他回到了純理論。他利用這些測量數據發展了曲面論,按照這一理論,一個曲面的特徵只要透過測量曲面上曲線的長度就能確定。

這種「內蘊曲面論」啟發了他的學生黎曼發展三維或多維空間的一般內蘊幾何學。這是黎曼1854年在格丁根就職演說的題目,據說也是困擾高斯的問題。大約60年以後黎曼的思想形成愛因斯坦廣義相對論的數學基礎。

與他在引力和磁學方面的興趣有密切關係的是他在1840年發表的實分析論文。這一論文成為現代位勢理論的出發點。這可能是他所有的工作中唯一沒有達到他本人高標準要求的一個。只有到20世紀初數學家在不同原理的基礎上或藉助於尋求高斯結論是完全正確的成立條件,才有可能重新發展位勢理論。

1820到1830年間,高斯為了測繪汗諾華公國的地圖,開始做測地的工作,他寫了關於測地學的書,由於測地上的需要,他發明了日觀測儀。高斯和韋伯(Withelm Weber)一起從事磁的研究,他們的合作是很理想的:韋伯作實驗,高斯研究理論,韋伯引起高斯對物理問題的興趣,而高斯用數學工具處理物理問題,影響韋伯的思考工作方法。以伏特電池為電源,構造了世界第一個電報機,設立磁觀測站,和韋伯畫出了世界第一張地球磁場圖,而且定出了地球磁南極和磁北極的位置。

研究領域

高斯的數學研究幾乎遍及所有領域,在數論、代數學、非歐幾何、複變函數和微分幾何等方面都做出了開創性的貢獻。他還把數學應用於天文學、大地測量學和磁學的研究,發明了最小二乘法原理。高斯一生共發表155篇論文,他對待學問十分嚴謹,只是把他自己認為是十分成熟的作品發表出來。

高斯首先迷戀上的也是自然數。高斯在1808年談到:「任何一個花過一點功夫研習數論的人,必然會感受到一種特別的激情與狂熱。」

高斯對代數學的重要貢獻是證明了代數基本定理,他的存在性證明開創了數學研究的新途徑。事實上在高斯之前有許多數學家認為已給出了這個結果的證明,可是沒有一個證明是嚴密的。高斯把前人證明的缺失一一指出來,然後提出自己的見解,他一生中一共給出了四個不同的證明。高斯在1816年左右就得到非歐幾何的原理。他還深入研究複變函數,建立了一些基本概念發現了著名的柯西積分定理。他還發現橢圓函數的雙周期性,但這些工作在他生前都沒發表出來。

在物理學方面高斯最引人注目的成就是在1833年和物理學家韋伯發明了有線電報,這使高斯的聲望超出了學術圈而進入公眾社會。除此以外,高斯在力學、測地學、水工學、電動學、磁學和光學等方面均有傑出的貢獻。

人物著作=

《算術研究》 1801年 奠定了近代數論的基礎、介紹了同餘的概念、以及二次互逆定理。   《天體運動理論》 1809年 關於天體運動的著作,包含了微積分方程、圓錐截痕和橢圓軌道,如何估計行星的軌道。

《曲面的一般研究》 1827年 全面系統的闡述了空間曲面的微積分幾何學。

關於代數基本定理的博士論文 1799年 高斯巧妙的陳述和證明了每個復係數方程必有複數解這個定理,而且沒有用到複數,在此之前的證明都是不完整的。

《高等大地測量學理論》上 1843/44年 地理測量

《高等大地測量學理論》下 1846/47年 地理測量

《地磁的一般理論》

《地磁概念》

《論與距離平方成反比的引力和斥力的普遍定律》      

相關影片

 

參考文獻