阿基米德檢視原始碼討論檢視歷史
阿基米德 | |
---|---|
出生 | 公元前287年 |
國籍 | 古希臘 |
職業 | 科學家、數學家、物理學家 |
阿基米德(希臘語:´Αρχιμήδης[[Category:含有Template:ISO 639 name el的條目]];前287年-前212年),古希臘數學家、物理學家、發明家、工程師、天文學家[1]。出生於西西里島的錫拉庫扎,他曾到過亞歷山卓,據說他在亞歷山卓時期發明了阿基米德式螺旋抽水機,今天的埃及仍在使用。第二次布匿戰爭時,羅馬大軍圍攻錫拉庫扎,阿基米德死於羅馬士兵之手。阿基米德對數學和物理學的影響極為深遠,被視為古希臘最傑出的科學家[2][3]。他與牛頓和高斯被西方世界評價為有史以來最偉大的三位數學家[4]。
目錄
生平
公元前287年,阿基米德出生在古希臘西西里島東南端的敘拉古城。在當時古希臘的輝煌文化已經逐漸衰退,經濟、文化中心逐漸轉移到埃及的亞歷山大城,義大利半島上新興的羅馬共和國不斷的擴張勢力,北非有新的國家迦太基興起,敘拉古城成為許多勢力的角力場所。
阿基米德的父親是天文學家和數學家,所以他從小受家庭影響,十分喜愛數學。大概在他九歲時,父親送他到埃及的亞歷山大城唸書,亞歷山大城是當時西方世界的知識、文化中心,學者雲集,舉凡文學、數學、天文學、醫學的研究都很發達,阿基米德在這裡隨許多著名的數學家學習,包括有名的幾何學大師歐幾里得。
在經過許多年的求學歷程後,阿基米德回到故鄉敘拉古。據說敘拉古的國王希倫二世與阿基米德的父親是朋友,也有另一種說法:國王與他們是親戚關係。總之,回國後的阿基米德受到國王的禮遇,經常出入宮廷,並常與國王、大臣們暢談國事或閒話家常。阿基米德在這種優裕的環境下,作了幾十年的研究工作,並在數學、力學、機械方面取得了許多重要的發現與成就,成為上古時代歐洲最有創建的科學家。
據說阿基米德經常為了研究而廢寢忘食,走進他的住處,隨處可見數字和方程式,地上則是畫滿了各式各樣的圖形,牆上與桌上也無法倖免地成了他的計算板。
真假皇冠
國王請金匠用純金打造了一頂純金王冠,做好了以後,國王懷疑金匠造假摻了「銀」在裡面,但是又不能把王冠毀壞來鑑定。阿基米德想了好久,一直沒有好方法,吃不下飯也睡不好覺。有一天,他在洗澡的時候發現,當他坐在浴盆裡時水位上升了,這使得他想到了:「上升了的水位正好應該等於王冠的體積,所以只要拿與王冠等重量的金子,放到水裡,測出它的體積,看看它的體積是否與王冠的體積相同,如果王冠體積更大,這就表示其中造了假,摻了銀。」
阿基米德想到這裡,不禁高興的從浴盆跳了出來,裸著身體就跑了出去,邊跑還邊喊著「εύρηκα!(我發現了!)」果然經過證明之後,王冠中確實含有其他雜質,阿基米德成功的揭穿了金匠的詭計,國王對他當然是更加的信服了。
後來阿基米德將這個發現進一步總結出浮力理論,為浮體學建立了基本的定理,並寫在他的《浮體論》著作裡,也就是:物體在浮體中所受的浮力,等於物體所排開的浮體的重量。
舉起地球
阿基米德對於機械的研究源自於他在亞歷山卓城求學時期。有一天阿基米德在久旱的尼羅河邊散步,看到農民提水澆地相當費力,經過思考之後他發明了一種利用螺旋作用在水管裡旋轉而把水吸上來的工具,後世的人叫它做「阿基米德螺旋提水器」,埃及一直到二千年後的現在,還有人使用這種器械。這個工具成了後來螺旋推進器的先祖。
當時的歐洲,在工程和日常生活中,經常使用一些簡單機械,譬如螺絲、滑車、槓桿、齒輪等,阿基米德花了許多時間去研究,發現了「槓桿原理」和「力矩」的觀念,對於經常使用工具製作機械的阿基米德而言,將理論運用到實際的生活上是輕而易舉的。他曾說只要給他一個支點,他就可以舉起整個地球(當然這只是比喻,因為太空沒有重力)。
剛好此時國王希倫二世遇到了一個棘手的問題:他替埃及托勒密王造了一艘船,但因為船太大太重,無法放進海裡,國王就對阿基米德說:「你連地球都舉得起來,把一艘船放進海裡應該很容易吧?」於是阿基米德迅速地巧妙組合各種機械,造出一架機具。在一切準備妥當後,將牽引機的繩子交給國王,國王輕輕一拉,大船果然移動下水,國王不得不為阿基米德的天才所懾服。從這個歷史故事我們可以知道,阿基米德可能是當時全世界對於機械的原理與運用,瞭解最透徹的人。
數學大師
對於阿基米德來說,工程機械和物理上的發明只是次要的,他更感興趣而且投注更多時間的是純理論上的研究,尤其是在數學和天文學方面。在數學方面,他利用「逼近法」算出球表面積、球體積、拋物線、橢圓面積,後世的數學家依據這種方法加以發展成近代的「微積分」。他還研究出螺旋形曲線的性質,現今的「阿基米德螺線」曲線,就是為紀念他而命名。另外他在《數沙者》一書中,他創造了一套記錄龐大數目的方法,簡化了記數的方式。
經由研究古代再生羊皮書上的文字,科學家發現了失傳的阿基米德手稿,並加以解讀。在殘卷《方法》命題14中,阿基米德提出無窮大的概念,是現代集合論的基礎。在殘卷《Stomachion》(中文譯名為「阿基米德小房[5]」,英文譯名直譯為「阿基米德盒子」)中,現代科學家發現,阿基米德經由一種類似七巧板的圖形遊戲,研究以十四片碎片組成正方形的所有拼法(一共17152種方法,並可分成536個大類),成為組合學最早的開端。
在天文學方面,他曾運用水力製作一座天象儀,球面上有日、月、星辰和五大行星,根據記載,這個天象儀不但運行精確,連何時會發生月食、日食都能加以預測。晚年的阿基米德開始懷疑地球中心學說,並猜想地球有可能繞太陽轉動,這個觀念一直到哥白尼時代才被人們提出來討論。
如果讓阿基米德一直持續的研究下去,他的成就將會更加不可限量,很可惜在公元前212年,他74歲時,被人殺死。
公元前3世紀末正是羅馬共和國與北非迦太基帝國,為了爭奪西西里島的霸權而開戰的時期。地處西西里島的敘拉古一直都是投靠羅馬,但是公元前216年迦太基大敗羅馬軍隊,敘拉古的新國王(希倫二世的孫子繼任),立即見風轉舵與迦太基結盟,羅馬共和國於是派馬克盧斯將軍領軍從海路和陸路同時進攻敘拉古。國難當前,保家衛國的責任感促使阿基米德奮起抗敵,於是他絞盡腦汁,日以繼夜的發明各種禦敵武器。
根據一些年代較晚的記載,當時他造了巨大的起重機,可以將敵人的戰艦吊到半空中,然後重重摔下使戰艦在水面上粉碎;他還利用槓桿原理製造出一批投石機,凡是靠近城牆的敵人,都難逃他飛石與標槍的攻擊。這些武器弄得羅馬軍隊驚慌失措、人人害怕,連大將軍馬克盧斯也不得不承認「這是場羅馬艦隊與阿基米德一人的戰爭」、「阿基米德簡直是神話中的百手巨人」。
由於久攻不下,馬克盧斯決定改變策略,以圍城的持久戰來斷絕城內糧食,這個妙計使得阿基米德也無可奈何。公元前212年,敘拉古城終於被羅馬軍隊攻陷。相傳羅馬軍隊進城時,阿基米德還在自家前的地上畫圖研究幾何問題,一個羅馬戰士走近沉思中的阿基米德,要求他立刻前去面見馬克盧斯,並踩壞了沙地上畫的圖形。阿基米德大吼:「走開,別踩壞我的圖形!我要解開這個問題。」戰士被激怒了,完全不管長官發出的保護令,拔出劍砍向阿基米德,這位偉大的科學家就這麼一命嗚呼了。
馬克盧斯聽到這消息後十分悲痛,於是為阿基米德建了一座刻有球內切圓柱圖形的墓,來表達他對這位偉大科學家及偉大對手的敬意。
另外,阿基米德還有幾何學方面的成就。
阿基米德是第一位講科學的工程師,在他的研究中,使用歐幾里得的方法,先假設,再得到結果,他不斷地尋求一般性的原則用於特殊的工程上。他的作品始終融合數學和物理,因此阿基米德成為物理學之父。
他應用槓桿原理於戰爭,保衛西拉斯鳩的事蹟是家喻戶曉的。而他也以同一原理導出部分球體的體積、回轉體的體積(橢球、回轉拋物面、回轉雙曲面),此外,他也討論阿基米德螺線(例如:蒼蠅由等速旋轉的唱盤中心向外走去所留下的軌跡),圓、球體、圓柱的相關原理,成就斐然。
阿基米德將歐幾里得提出的趨近觀念作了有效的運用,他提出圓內接多邊形和相似圓外切多邊形,當邊數足夠大時,兩多邊形的周長便一個由上,一個由下的趨近於圓周長。他先用六邊形,以後逐次加倍邊數,到了九十六邊形,求出:<math>{223 \over 71} </math> <Π < <math>\frac{22}{7}</math>;:也就是 <math> 3.140845 < \pi < 3.142857</math>[6]另外他算出球的表面積是其內接最大圓面積的四倍。而他導出圓柱內切球體的體積是圓柱體積的三分之二,這個定理就刻在他的墓碑上。
其他的發現和發明
雖然槓桿原理不是阿基米德發現的,但是他在他的衛面平衡研究中解釋了其工作原理。以亞里士多德的追隨者為主的逍遙學派學校中曾出現過更早的關於槓桿的描述,也有說是阿爾庫塔斯。根據帕普斯所述,阿基米德關於槓桿的研究曾引出過其非常著名的一句話:「給我一個支點,我可以舉起整個地球。」普魯塔克曾描述過阿基米德是如何設計滑輪機構的,該機構可以讓水手們利用槓桿原理提起那些過重的無法單憑人力搬運的物品。阿基米德也被認為曾改進過投射器的威力和準確度,並且發明了在第一次迦太基戰爭中使用的計程器。這個計程器是一種車輛的形式,在每行駛過一定距離後車上的齒輪機構就會向特定容器中投入一個球。
西塞羅在他的對話錄《國家論 》中曾大致提到過阿基米德,這部對話錄描述了一段發生在公元前129年的虛構的談話。公元前212年,據說在占領敘拉古之後,馬庫斯·克勞狄斯·馬塞勒斯將軍將兩部用於天文學的機械裝置帶回了羅馬,這兩部裝置顯示了太陽,月亮和五個行星的運動。西塞羅還提到了由泰勒斯和歐多克索斯設計的類似裝置。對話錄表明,馬塞勒斯將其中一部機器據為已有,另外一部則捐贈給了羅馬的功德廟。馬塞勒斯持有的那一部後來被公開展示,據西塞羅說,加勒斯向斐勒斯 演示的過程被後者記錄如下:
當加勒斯移動球時,這個銅製裝置上的月亮跟隨着太陽一起運動,如同現實中的天空一樣,而當太陽,月亮和地球呈一條直線時,投影的狀態再現了日蝕現象。
這是一段關於天象儀或是太陽系儀的描述。帕普斯曾說過,阿基米德有一些手稿(現已丟失)被命名為「球體製造」,其中有關於此類機械裝置的製造方法。在這方面的現代研究主要集中在安提基特拉機械上,這是另外一個可能出於相同目的而設計的古代機械。製造這類機械需要極其尖端的差動齒輪知識和技術。這曾一度被認為已經超出了古代的技術能力範疇,但1902年發現的安提基特拉機械可以證明早在古希臘這類裝置就已經出現了。
數學成就
當阿基米德經常被視為一個機械裝置的設計師時,他也做了有關於數學領域的貢獻。普魯塔克寫道:「他將他全部的情感和野心完全的投注在那些單純的猜測裡頭,而在那裡可能不需要有庸俗的生活。」
阿基米德使用無窮小量的數學分析方式,類似現在的微積分。通過反證法,他甚至可以讓問題的答案達到任意精確度,同時也給出答案所在的範圍。這種技術被稱為窮舉法,並且他使用這種方法計算出了圓周率的近似值。他做出圓的外接多邊型和內接多邊型。隨著多邊形的邊數增加,將會越來越接近圓。 當多邊型達到96邊時,阿基米德計算出其面積,並且指出圓周率的值:<math>{223 \over 71} < \pi < {22 \over 7}</math>;也就是 <math> 3.140845 < \pi < 3.142857</math>。他還證明了圓面積等於圓周率乘以半徑的平方。在球體和圓柱的研究中,阿基米德假設,一個任意的數在自加足夠多的次數之後,會大於任意一個給定的數。這被稱為實數的阿基米德性質。
在其著作圓的測量中,阿基米德給出了3的平方根的近似值,介於265 ⁄ 153 (約為1.7320261)和1351 ⁄ 780 (約為1.7320512)之間。其實際值大約為1.7320508,這是一個非常準確的近似值。他直接給出了結果卻沒有給出任何計算方法的解釋。由此,約翰·沃利斯作出如下評價:「這就像是故意的,似乎阿基米德已經決定不向後人們透露他的算法的秘密,只是強迫他們接受他的結果。」
著作
- 《方法論》
- 《論浮體》:此書討論物體的浮力,研究了旋轉拋物體在流體中的穩定性
- 《論球與圓柱》:此書從幾個定義和公理出發,推出關於球與圓柱面積和體積等50多個命題
- 《平面圖形的平衡或其重心》:此書從幾個基本假設出發,通過嚴格的幾何方法論證力學原理,並求出若干平面圖形的重心
- 《數沙者》:此書主要講述設計一種可以表示任何大數目的方法
- 《論槓桿》
- 《論劈錐曲面體與球體》
- 《拋物線求積》
- 《論螺線》
後人對其發明之應用
香港地下鐵路公司(今港鐵)於1980年代初興建地鐵港島綫時曾廣泛應用阿基米德螺旋技術挖移地底岩土鐵路隧道。[7]
流行文化中的阿基米德
阿基米德在《Fate/Extella》中是以Caster職階登場的英靈,寶具為「集束之藁啊,如月般燃燒殆盡吧」。
相關影片
參考文獻
- ↑ Archimedes (c.287 - c.212 BC). BBC History. [2012-06-07].
- ↑ Calinger, Ronald. A Contextual History of Mathematics. Prentice-Hall. 1999: 150. ISBN 0-02-318285-7.
Shortly after Euclid, compiler of the definitive textbook, came Archimedes of Syracuse (ca. 287 212 BC), the most original and profound mathematician of antiquity.
- ↑ Archimedes of Syracuse. The MacTutor History of Mathematics archive. 1999年1月 [2008-06-09].
- ↑ 「數學之神」──阿基米德. 中國科普博覽. [2013-10-11].
- ↑ 希思, T.L. 《阿基米德全集(修訂版)》. 陝西科學技術出版社. 2010年12月. ISBN 978-7-5369-2342-3.
- ↑ 阿基米德原著 《量圓》 《中國數學史大系》 副卷第一 第二章 第三編 希臘 197-203頁
- ↑ 興建香港地下鐵路
擴展閱讀
- Boyer, Carl Benjamin. A History of Mathematics. New York: Wiley. 1991. ISBN 0-471-54397-7.
- Clagett, Marshall. Archimedes in the Middle Ages 5 vols. Madison, WI: University of Wisconsin Press. 1964–1984.
- Dijksterhuis, E.J. Archimedes. Princeton University Press, Princeton. 1987. ISBN 0-691-08421-1. Republished translation of the 1938 study of Archimedes and his works by an historian of science.
- Gow, Mary. Archimedes: Mathematical Genius of the Ancient World. Enslow Publishers, Inc. 2005. ISBN 0-7660-2502-0.
- Hasan, Heather. Archimedes: The Father of Mathematics. Rosen Central. 2005. ISBN 978-1-4042-0774-5.
- Heath, T.L. Works of Archimedes. Dover Publications. 1897. ISBN 0-486-42084-1. Complete works of Archimedes in English.
- Netz, Reviel; Noel, William. The Archimedes Codex. Orion Publishing Group. 2007. ISBN 0-297-64547-1.
- Pickover, Clifford A. Archimedes to Hawking: Laws of Science and the Great Minds Behind Them. Oxford University Press. 2008. ISBN 978-0-19-533611-5.
- Simms, Dennis L. Archimedes the Engineer. Continuum International Publishing Group Ltd. 1995. ISBN 0-7201-2284-8.
- Stein, Sherman. Archimedes: What Did He Do Besides Cry Eureka?. Mathematical Association of America. 1999. ISBN 0-88385-718-9.