機床
機床 |
中文名稱:機床 外文名稱:machine tool 含義:指製造機器的機器 別稱:工作母機或工具機 |
機床(英文名稱:machine tool)是指製造機器的機器,亦稱工作母機或工具機,習慣上簡稱機床。一般分為金屬切削機床、鍛壓機床和木工機床等。現代機械製造中加工機械零件的方法很多:除切削加工外,還有鑄造、鍛造、焊接、衝壓、擠壓等,但凡屬精度要求較高和表面粗糙度要求較細的零件,一般都需在機床上用切削的方法進行最終加工。
機床在國民經濟現代化的建設中起着重大作用。[1]
車床是主要用車刀對旋轉的工件進行車削加工的機床。在車床上還可用鑽頭、擴孔鑽、鉸刀、絲錐、板牙和滾花工具等進行相應的加工。車床主要用於加工軸、盤、套和其他具有迴轉表面的工件,是機械製造和修配工廠中使用最廣的一類機床。
常見類型
車床
1)古代滑輪、弓形杆的"弓車床"。
早在古埃及時代,人們已經發明了將木材繞着它的中心軸旋轉時用刀具進行車削的技術。起初,人們是用兩根立木作為支架,架起要車削的木材,利用樹枝的彈力把繩索卷到木材上,靠手拉或腳踏拉動繩子轉動木材,並手持刀具而進行切削。
這種古老的方法逐漸演化,發展成了在滑輪上繞二三圈繩子,繩子架在彎成弓形的彈性杆上,來回推拉弓使加工物體旋轉從而進行車削,這便是"弓車床"。
2)中世紀曲軸、飛輪傳動的"腳踏車床"。
到了中世紀,有人設計出了用腳踏板旋轉曲軸並帶動飛輪,再傳動到主軸使其旋轉的"腳踏車床"。16世紀中葉,法國有一個叫貝松的設計師設計了一種用螺絲槓使刀具滑動的車螺絲用的車床,可惜的是,這種車床並沒有推廣使用。
3)十八世紀誕生了床頭箱、卡盤
時間到了18世紀,又有人設計了一種用腳踏板和連杆旋轉曲軸,可以把轉動動能貯存在飛輪上的車床上,並從直接旋轉工件發展到了旋轉床頭箱,床頭箱是一個用於夾持工件的卡盤。
4)英國人莫茲利發明了刀架車床(1797年)
在發明車床的故事中,最引人注目的是一個名叫莫茲利的英國人,因為他於1797年發明了劃時代的刀架車床,這種車床帶有精密的導螺杆和可互換的齒輪。
各種專用車床的誕生為了提高機械化自動化程度。1845年,美國的菲奇發明轉塔車床。1848年,美國又出現回輪車床。1873年,美國的斯潘塞製成一台單軸自動車床,不久他又製成三軸自動車床。20世紀初出現了由單獨電機驅動的帶有齒輪變速箱的車床。由於高速工具鋼的發明和電動機的應用,車床不斷完善,終於達到了高速度和高精度的現代水平。
第一次世界大戰後,由於軍火、汽車和其他機械工業的需要,各種高效自動車床和專門化車床迅速發展。為了提高小批量工件的生產率,1940年代末,帶液壓仿形裝置的車床得到推廣,與此同時,多刀車床也得到發展。1950年代中,發展了帶穿孔卡、插銷板和撥碼盤等的程序控制車床。數控技術於1960年代開始用於車床,1970年代後得到迅速發展。
車床的分類車床依用途和功能區分為多種類型。[2]
普通車床的加工對象廣,主軸轉速和進給量的調整範圍大,能加工工件的內外表面、端面和內外螺紋。這種車床主要由工人手工操作,生產效率低,適用於單件、小批生產和修配車間。
轉塔車床和迴轉車床具有能裝多把刀具的轉塔刀架或回輪刀架,能在工件的一次裝夾中由工人依次使用不同刀具完成多種工序,適用於成批生產。
自動車床能按一定程序自動完成中小型工件的多工序加工,能自動上
下料,重複加工一批同樣的工件,適用於大批、大量生產。
多刀半自動車床有單軸、多軸、臥式和立式之分。單軸臥式的布局形式與普通車床相似,但兩組刀架分別裝在主軸的前後或上下,用於加工盤、環和軸類工件,其生產率比普通車床提高3~5倍。
仿形車床能仿照樣板或樣件的形狀尺寸,自動完成工件的加工循環,適用於形狀較複雜的工件的小批和成批生產,生產率比普通車床高10~15倍。有多刀架、多軸、卡盤式、立式等類型。
立式車床的主軸垂直於水平面,工件裝夾在水平的迴轉工作檯上,刀架在橫樑或立柱上移動。適用於加工較大、較重、難於在普通車床上安裝的工件,一般分為單柱和雙柱兩大類。
鏟齒車床在車削的同時,刀架周期地作徑嚮往復運動,用於鏟車銑刀、滾刀等的成形齒面。通常帶有鏟磨附件,由單獨電動機驅動的小砂輪鏟磨齒面。
專門車床是用於加工某類工件的特定表面的車床,如曲軸車床、凸輪軸車床、車輪車床、車軸車床、軋輥車床和鋼錠車床等。
聯合車床主要用於車削加工,但附加一些特殊部件和附件後,還可進行鏜、銑、鑽、插、磨等加工,具有"一機多能"的特點,適用於工程車、船舶或移動修理站上的修配工作。
鏜床
工廠手工業雖然是相對落後的,但是它卻訓練和造就了許許多多的技工,他們儘管不是專門製造機器的行家裡手,但他們卻能製造各種各樣的手工器具,例如刀、鋸、針、鑽、錐、磨以及軸類、套類、齒輪類、床架類等等,其實機器就是由這些零部件組裝而成的。
最早的鏜床設計者--達·芬奇。鏜床被稱為"機械之母"。說起鏜床,還先得說說達·芬奇。這位傳奇式的人物,可能就是最早用於金屬加工的鏜床的設計者。他設計的鏜床是以水力或腳踏板作為動力,鏜削的工具緊貼着工件旋轉,工件則固定在用起重機帶動的移動台上。1540年,另一位畫家畫了一幅《火工術》的畫,也有同樣的鏜床圖。那時的鏜床專門用來對中空鑄件進行精加工。
為大炮炮筒加工而誕生的第一台鏜床(威爾金森,1775年)。到了17世紀,由於軍事上的需要,大炮製造業的發展十分迅速,如何製造出大炮的炮筒成了人們亟需解決的一大難題。世界上第一台真正的鏜床是1775年由威爾金森發明的。其實,確切地說,威爾金森的鏜床是一種能夠精密地加工大炮的鑽孔機,它是一種空心圓筒形鏜杆,兩端都安裝在軸承上。
1728年,威爾金森出生在美國,在他20歲時,遷到斯塔福德郡,建造了比爾斯頓的第一座煉鐵爐。因此,人稱威爾金森為"斯塔福德郡的鐵匠大師"。1775年,47歲的威爾金森在他父親的工廠里經過不斷努力,終於製造出了這種能以罕見的精度鑽大炮炮筒的新機器。有意思的是,1808年威爾金森去世以後,他就葬在自己設計的鑄鐵棺內。
鏜床為瓦特的蒸汽機做出了重要貢獻如果說沒有蒸汽機的話,當時就不可能出現第一次工業革命的浪潮。而蒸汽機自身的發展和應用,除了必要的社會機遇之外,技術上的一些前提條件也是不可忽視的,因為製造蒸汽機的零部件,遠不像木匠削木頭那麼容易,要把金屬製成一些特殊形狀,而且加工的精度要求又高,沒有相應的技術設備是做不到的。比如說,製造蒸汽機的汽缸和活塞,活塞製造過程中所要求的外徑的精度,可以從外面邊量尺寸邊進行切削,但要滿足汽缸內徑的精度要求,採用一般加工方法就不容易做到了。
斯密頓是十八世紀最優秀的機械技師。斯密頓設計的水車、風車設備達43件之多。在製作蒸汽機時,斯密頓最感棘手的是加工汽缸。要想將一個大型的汽缸內圓加工成圓形,是相當困難的。為此,斯密頓在卡倫鐵工廠製作了一台切削汽缸內圓用的特殊機床。用水車作動力驅動的這種鏜床,在其長軸的前端安裝上刀具,這種刀具可以在汽缸內轉動,以此就可以加工其內圓。由於刀具安裝在長軸的前端,就會出現軸的撓度等問題,所以,要想加工出真正圓形的汽缸是十分困難的。為此,斯密頓不得不多次改變汽缸的位置進行加工。
對於這個難題,威爾金森於1774年發明的鏜床起了很大的作用。這種鏜床利用水輪使材料圓筒旋轉,並使其對準中心固定的刀具推進,由於刀具與材料之間有相對運動,材料就被鏜出精確度很高的圓柱形孔洞。當時、用鏜床做出直徑為72英寸的汽缸,誤差不超過六便士硬幣的厚度。用現代技術衡量,這是個很大的誤差,但在當時的條件下,能達到這個水平,已經是很不簡單了。
但是,威爾金森的這項發明沒有申請專利保護,人們紛紛仿造它,安裝它。1802年,瓦特也在書中談到了威爾金森的這項發明,並在他的索霍鐵工廠里進行仿製。以後,瓦特在製造蒸汽機的汽缸和活塞時,也應用了威爾金森這架神奇的機器。原來,對活塞來說,可以在外面一邊量着尺寸,一邊進行切削,但對汽缸就不那麼簡單了,非用鏜床不可。當時,瓦特就是利用水輪使金屬圓筒旋轉,讓中心固定的刀具向前推進,用以切削圓筒內部,結果,直徑75英寸的汽缸,誤差還不到一個硬幣的厚度,這在當對是很先進的了。
工作檯升降式鏜床誕生(赫頓,1885年)。在以後的幾十年間,人們對威爾金森的鏜床作了許多改進。1885年,英國的赫頓製造了工作檯升降式鏜床,這已成為了現代鏜床的雛型。
銑床
銑床系指主要用銑刀在工件上加工各種表面的機床。通常銑刀旋轉運動為主運動,工件(和)銑刀的移動為進給運動。它可以加工平面、溝槽,也可以加工各種曲面、齒輪等。銑床是用銑刀對工件進行銑削加工的機床。銑床除能銑削平面、溝槽、輪齒、螺紋和花鍵軸外,還能加工比較複雜的型面,效率較刨床高,在機械製造和修理部門得到廣泛應用。
19世紀,英國人為了蒸汽機等工業革命的需要發明了鏜床、刨床,而美國人為了生產大量的武器,則專心致志於銑床的發明。銑床是一種帶有形狀各異銑刀的機器,它可以切削出特殊形狀的工件,如螺旋槽、齒輪形等。
早在1664年,英國科學家胡克就依靠旋轉圓形刀具製造出了一種用於切削的機器,這可算是原始的銑床了,但那時社會對此沒有做出熱情的反響。在十九世紀四十年代,普拉特設計了所謂林肯銑床。當然,真正確立銑床在機器製造中地位的,要算美國人惠特尼了。
第一台普通銑床(惠特尼,1818年)。1818年,惠特尼製造了世界上第一台普通銑床,但是,銑床的專利卻是英國的博德默(帶有送刀裝置的龍門刨床的發明者)於1839年捷足先"得"的。由於銑床造價太高,所以當時問津者不多。
第一台萬能銑床(布朗,1862年)。銑床沉默一段時間後,又在美國活躍起來。相比之下,惠特尼和普拉特還只能說是為銑床的發明應用做了奠基性的工作,真正發明能適用於工廠各種操作的銑床的功績應該歸屬美國工程師約瑟夫·布朗。
1862年,美國的布朗製造出了世界上最早的萬能銑床,這種銑床在備有萬有分度盤和綜合銑刀方面是劃時代的創舉。萬能銑床的工作檯能在水平方向旋轉一定的角度,並帶有立銑頭等附件。他設計的"萬能銑床"在1867年巴黎博覽會上展出時,獲得了極大的成功。同時,布朗還設計了一種經過研磨也不會變形的成形銑刀,接着還製造了磨銑刀的研磨機,使銑床達到了現在這樣的水平。
刨床
在發明過程中,許多事情往往是相輔相承、環環相扣的:為了製造蒸汽機,需要鏜床相助;蒸汽機發明發後,從工藝要求上又開始呼喚龍門刨床了。可以說,正是蒸汽機的發明,導致了"工作母機"從鏜床、車床向龍門刨床的設計發展。其實,刨床就是一種刨金屬的"刨子"。
加工大平面的龍門刨床(1839年)。由於蒸汽機閥座的平面加工需要,從19世紀初開始,很多技術人員開始了這方面的研究,其中有理查德·羅伯特、理查德·普拉特、詹姆斯·福克斯以及約瑟夫·克萊門特等。他們從1814年開始,在25年的時間內各自獨立地製造出了龍門刨床。這種龍門刨床是把加工物件固定在往返平台上,刨刀切削加工物的一面。但是,這種刨床還沒有送刀裝置,正處在從"工具"向"機械"的轉化過程之中。到了1839年,英國一個名叫博默德的人終於設計出了具有送刀裝置的龍門刨床。
加工小平面的牛頭刨床。另一位英國人內史密斯從1831年起的40年內發明製造了加工小平面的牛頭刨床,它可以把加工物體固定在床身上,而刀具作往返運動。
此後,由於工具的改進、電動機的出現,龍門刨床一方面朝高速切割、高精度方向發展,另一方面朝大型化方向發展。
磨床
磨削是人類自古以來就知道的一種古老技術,舊石器時代,磨製石器用的就是這種技術。以後,隨着金屬器具的使用,促進了研磨技術的發展。但是,設計出名副其實的磨削機械還是近代的事情,即使在19世紀初期,人們依然是通過旋轉天然磨石,讓它接觸加工物體進行磨削加工的。
第一台磨床(1864年)。1864年,美國製成了世界上第一台磨床,這是在車床的溜板刀架上裝上砂輪,並且使它具有自動傳送的一種裝置。過了12年以後,美國的布朗發明了接近現代磨床的萬能磨床。
人造磨石--砂輪的誕生(1892年)。人造磨石的需求也隨之興起。如何研製出比天然磨石更耐磨的磨石呢?1892年,美國人艾奇遜試製成功了用焦炭和砂製成的碳化硅,這是一種現稱為C磨料的人造磨石;兩年以後,以氧化鋁為主要成份的A磨料又試製成功,這樣,磨床便得到了更廣泛的應用。
以後,由於軸承、導軌部分的進一步改進,磨床的精度越來越高,並且向專業化方向發展,出現了內圓磨床、平面磨床、滾磨床、齒輪磨床、萬能磨床等等。
鑽床
古代鑽床--"弓轆轤"。鑽孔技術有着久遠的歷史。考古學家現已發現,公元前 4000年,人類就發明了打孔用的裝置。古人在兩根立柱上架個橫樑,再從橫樑上向下懸掛一個能夠旋轉的錐子,然後用弓弦纏繞帶動錐子旋轉,這樣就能在木頭石塊上打孔了。不久,人們還設計出了稱為"轆轤"的打孔用具,它也是利用有彈性的弓弦,使得錐子旋轉。
第一台鑽床(惠特沃斯,1862年)。到了1850年前後,德國人馬蒂格諾尼最早製成了用於金屬打孔的麻花鑽。1862年在英國倫敦召開的國際博覽會上,英國人惠特沃斯展出了由動力驅動的鑄鐵櫃架的鑽床,這便成了近代鑽床的雛形。
以後,各種鑽床接連出現,有搖臂鑽床、備有自動進刀機構的鑽床、能一次同時打多個孔的多軸鑽床等。由於工具材料和鑽頭的改進,加上採用了電動機,大型的高性能的鑽床終於製造出來了。
數控機床
是數字控制機床的簡稱,是一種裝有程序控制系統的自動化機床。該控制系統能夠邏輯地處理具有控制編碼或其他符號指令規定的程序,並將其譯碼,從而使機床動作並加工零件的控制單元,數控機床的操作和監控全部在這個數控單元中完成,它是數控機床的大腦。
加工精度高,具有穩定的加工質量;
可進行多坐標的聯動,能加工形狀複雜的零件;
加工零件改變時,一般只需要更改數控程序,可節省生產準備時間;
機床本身的精度高、剛性大,可選擇有利的加工用量,生產率高(一般為普通機床的3~5倍);
機床自動化程度高,可以減輕勞動強度;
對操作人員的素質要求較高,對維修人員的技術要求更高。
數控機床一般由下列幾個部分組成:
主機,是數控機床的主體,包括機床身、立柱、主軸、進給機構等機械部件。它是用於完成各種切削加工的機械部件。
數控裝置,是數控機床的核心,包括硬件(印刷電路板、CRT顯示器、鍵盒、紙帶閱讀機等)以及相應的軟件,用於輸入數字化的零件程序,並完成輸入信息的存儲、數據的變換、插補運算以及實現各種控制功能。
驅動裝置,是數控機床執行機構的驅動部件,包括主軸驅動單元、進給單元、主軸電機及進給電機等。它在數控裝置的控制下通過電氣或電液伺服系統實現主軸和進給驅動。當幾個進給聯動時,可以完成定位、直線、平面曲線和空間曲線的加工。
輔助裝置,指數控機床的一些必要的配套部件,用以保證數控機床的運行,如冷卻、排屑、潤滑、照明、監測等。它包括液壓和氣動裝置、排屑裝置、交換工作檯、數控轉台和數控分度頭,還包括刀具及監控檢測裝置等。
編程及其他附屬設備,可用來在機外進行零件的程序編制、存儲等。
數控機床加工流程說明
CAD:Computer Aided Design,即計算機輔助設計。2D或3D的工件或立體圖設計
CAM:Computer Aided Making,即計算機輔助製造。使用CAM軟體生成G-Code
CNC:數控機床控制器,讀入G-Code開始加工
數控機床加工程式說明
CNC程式可分為主程序及副程序(子程序),凡是重覆加工的部份,可用副程序編寫,以簡化主程序的設計。
字元(數值資料)→字語→單節→加工程序。
只要打開Windows操作系統里的記事本就可編輯CNC碼,寫好的CNC程式則可用模擬軟體來模擬刀具路徑的正確性。
數控機床基本機能指令說明
所謂機能指令是由位址碼(英文字母)及兩個數字所組成,具有某種意義的動作或功能,可分為七大類,即G機能(準備機能),M機能(輔助機能),T機能(刀具機能),S機能(主軸轉速機能),F機能(進給率機能),N機能(單節編號機能)和H/D機能(刀具補正機能)。
數控機床參考點說明
通常在數控工具機程式編寫時,至少須選用一個參考坐標點來計算工作圖上各點之坐標值,這些參考點我們稱之為零點或原點,常用之參考點有機械原點、回歸參考點、工作原點、程式原點。
機械參考點(Machine reference point):機械參考點或稱為機械原點,它是機械上的一個固定的參考點。
回歸參考點(Reference points):在機器的各軸上都有一回歸參考點,這些回歸參考點的位置,以行程監測裝置極限開關預先精確設定,作為工作檯及主軸的回歸點。
工作參考點(Work reference points):工作參考點或稱工作原點,它是工作坐標系統之原點,該點是浮動的,由程式設計者依需要而設定,一般被設定於工作檯上(工作上)任一位置。
程式參考點(Program reference points):程式參考點或稱程式原點,它是工作上所有轉折點坐標值之基準點,此點必須在編寫程式時加以選定,所以程式設計者選定時須選擇一個方便的點,以利程式之寫作。
鋼製伸縮式導軌防護罩為高品質的2-3mm厚鋼板冷壓成形而成,根據要求也可以為不鏽鋼的。特殊的表面磨光會使其另外升值。我們可以為所有的機床種類提供相應的導軌防護類型(水平、垂直、傾斜、橫向)。
曲軸機床
曲軸高效專用機床也有它的加工局限性,只有合理應用合適的加工機床,才能發揮出曲軸加工機床的高效專用性,從而提高工序的加工效率。
1、當曲軸軸頸有沉割槽時,數控內銑機床不能加工;如果曲軸軸頸軸向有沉割槽時,數控高速外銑機床和數控內銑機床均不能加工,但數控車-車拉機床能很方便地加工。
2、當平衡塊側面需要加工時,數控內銑機床應當為首選機床,因為內銑刀盤外圓定位,剛性好,尤其適用於加工大型鍛鋼曲軸;此時不適合用數控車-車拉機床,因為在曲軸的平衡塊側面需要加工的情況下,採用數控車-車拉機床加工,平衡塊側面是斷續切削,且曲軸轉速又很高,在這種工況下,崩刀現象比較嚴重。
3、當曲軸的軸頸無沉割槽,且平衡塊側面不需加工時,原則上幾種機床都能加工。當加工轎車曲軸時,主軸頸採用數控車-車拉機床,連杆頸採用數控高速外銑機床則應成為最佳高效加工選擇;當加工大型鍛鋼曲軸時,則主軸頸和連杆頸均採用數控內銑機床比較合理。
曲軸可以分為體形較大的鍛鋼曲軸和輕量化的轎車曲軸,鍛鋼曲軸軸頸一般無沉割槽,且側面需要加工,餘量較大;轎車曲軸一般軸頸有沉割槽,且側面不需要加工。因此可以得出結論:加工鍛鋼曲軸採用數控內銑機床,加工轎車曲軸主軸頸採用數控車-車拉機床,連杆頸採用數控高速外銑機床是比較合理的高效加工選擇。
鍛壓機床
鍛壓機床是金屬和機械冷加工用的設備,他只改變金屬的外形狀。鍛壓機床包括卷板機,剪板機,沖床,壓力機,液壓機,油壓機,折彎機等。
機床附件的種類有很多,包括柔性風琴式防護罩(皮老虎)、刀具刀片、鋼板不鏽鋼導軌護罩、伸縮式絲槓護罩、捲簾防護罩、防護裙簾、防塵折布、鋼製拖鏈、工程塑料拖鏈、機床工作燈、機床墊鐵、JR-2型矩形金屬軟管、DGT導管防護套、可調塑料冷卻管、吸塵管、通風管、防爆管、行程槽板、撞塊、排屑機、偏擺儀、平台\花崗石平板\鑄鐵平板及各種操作件等。
目錄
衡量指標
機床本身質量的優劣,直接影響所造機器的質量。衡量一台機床的質量是多方面的,但主要是要求工藝性好,系列化、通用化、標準化程度高,結構簡單,重量輕,工作可靠,生產率高等。具體指標如下:
1、工藝的可能性
工藝的可能性是指機床適應不同生產要求的能力。通用機床可以完成一定尺寸範圍內各種零件多工序加工,工藝的可能性較寬,因而結構相對複雜,適應於單件小批生產。專用機床只能完成一個或幾個零件的特定工序,其工藝的可能性較窄,適用於大批量生產,可以提高生產率,保證加工質量,簡化機床結構,降低機床成本。
2、精度和表面粗糙度
要保證被加工零件的精度和表面粗糙度,機床本身必須具備一定的幾何精度、運動精度、傳動精度和動態精度。
幾何精度是指機床在不運轉時部件間相互位置精度和主要零件的形狀精度、位置精度。機床的幾何精度對加工精度有重要的影響,因此是評定機床精度的主要指標。
運動精度是指機床在以工作速度運轉時主要零部件的幾何位置精度,幾何位置的變化量越大,運動精度越低。
傳動精度是指機床傳動鏈各末端執行件之間運動的協調性和均勻性。
以上三種精度指標都是在空載條件下檢測的,為全面反映機床的性能,必須要求機床有一定的動態精度和溫升作用下主要零部件的形狀、位置精度。影響動態精度的主要因素有機床的剛度、抗振性和熱變形等。
機床的剛度指機床在外力作用下抵抗變形的能力,機床的剛度越大,動態精度越高。機床的剛度包括機床構件本身的剛度和構件之間的接觸剛度。機床構件本身的剛度主要取決於構件本身的材料性質、截面形狀、大小等。構件之間的接觸剛度不僅與接觸材料、接觸面的幾何尺寸和硬度有關,而且還與接觸面的表面粗糙度、幾何精度、加工方法、接觸面介質、預壓力等因素有關。
機床上出現的振動,可分為受迫振動和自激振動。自激振動是在不受任何外力、激振力干擾的情況下,由切削過程內部產生的持續振動。在激振力的持續作用下,系統被迫引起的振動為受迫振動。
機床的抗震性和機床的剛度、阻尼特性、質量有關。由於機床的各個零部件熱膨脹係數不同,因而造成了機床各部分不同的變形和相對位移,這種現象叫機床的熱變形。由於熱變形而產生的誤差最大可占全部誤差的70%。
對於機床的動態精度,尚無統一標準,主要通過切削加工典型零件所達到的精度間接的對機床動態精度作出綜合的評價。
3、系列化等程度
機床的系列化、通用化、標準化是密切聯繫的,品種系列化是部件通用化和零件標準化的基礎,而部件的通用化和零件的標準化又促進和推動品種系列化工作。
4、機床的壽命
機床結構的可靠性和耐磨性是衡量機床壽命的主要指標。
機床分類
1、普通機床:包括普通車床、鑽床、鏜床、銑床、刨插床等;
2、精密機床:包括磨床、齒輪加工機床、螺紋加工機床和其他各種精密機床;
3、高精度機床:包括坐標鏜床、齒輪磨床、螺紋磨床、高精度滾齒機、高精度刻線機和其他高精度機床等;
4、數控機床:數控機床是數字控制機床的簡稱;
5、按工件大小和機床重量可分為儀表機床、中小型機床、大型機床、重型機床和超重型機床;
6、按加工精度可分為普通精度機床、精密機床和高精度機床;
7、按自動化程度可分為手動操作機床、半自動機床和自動機床;
8、按機床的控制方式,可分為仿形機床、程序控制機床、數控機床、適應控制機床、加工中心和柔性製造系統;
9、按加工方式或加工對象可分為車床、鑽床、鏜床、磨床、齒輪加工機床、螺紋加工機床、花鍵加工機床、銑床、刨床、插床、拉床、特種加工機床、鋸床和刻線機等。每類中又按其結構或加工對象分為若干組,每組中又分為若干型;
10、按機床的適用範圍,又可分為通用、專門化和專用機床。
專用機床中有一種以標準的通用部件為基礎,配以少量按工件特定形狀或加工工藝設計的專用部件組成的自動或半自動機床,稱為組合機床。
對一種或幾種零件的加工,按工序先後安排一系列機床,並配以自動上下料裝置和機床與機床間的工件自動傳遞裝置,這樣組成的一列機床群稱為切削加工自動生產線。
柔性製造系統是由一組數字控制機床和其他自動化工藝裝備組成的,用電子計算機控制,可自動地加工有不同工序的工件,能適應多品種生產。
機床附件
機床配件,指除機床主體外的所有可方便更換的元件。
機床配件主要包括刀具夾具、操作件、分度頭、工作檯、卡盤、接頭、排屑裝置、軟管、拖鏈、防護罩等。其中刀具夾具又分切削刀具、工裝夾具、刨刀、數控刀具及配套系統、刀帶、拉刀、切刀、滾刀、齒輪刀具、機用鋸片、數控刀具、夾頭、沖頭、車刀、鉸刀、鏜刀、插齒刀、剃齒刀、機用刀片、刀柄、銑刀、螺紋刀具、鑽頭、刀杆、其他刀具、夾具、絲錐;操作件分手輪、拉手、手柄、把手、門鈕、其它操作件產品。
故障診斷方法
數控機床電氣故障診斷有故障檢測、故障判斷及隔離和故障定位三個階段。第一階段的故障檢測就是對數控機床進行測試,判斷是否存在故障;第二階段是判定故障性質,並分離出故障的部件或模塊;第三階段是將故障定位到可以更換的模塊或印製線路板,以縮短修理時間。[3]
為了及時發現系統出現的故障,快速確定故障所在部位並能及時排除,要求故障診斷應儘可能少且簡便,故障診斷所需的時間應儘可能短。為此,可以採用以下的診斷方法:
直觀法
利用感覺器官,注意發生故障時的各種現象,如故障時有無火花、亮光產生,有無異常響聲、何處異常發熱及有無焦煳味等。仔細觀察可能發生故障的每塊印製線路板的表面狀況,有無燒毀和損傷痕跡,以進一步縮小檢查範圍,這是一種最基本、最常用的方法。
CNC系統的自診斷功能
依靠CNC 系統快速處理數據的能力,對出錯部位進行多路、快速的信號採集和處理,然後由診斷程序進行邏輯分析判斷,以確定系統是否存在故障,及時對故障進行定位。現代CNC系統自診斷功能可以分為以下兩類:
(1) 開機自診斷開機自診斷是指從每次通電開始至進入正常的運行準備狀態為止,系統內部的診斷程序自動執行對CPU、存儲器、總線、I/O單元等模塊、印製線路板、CRT單元、光電閱讀機及軟盤驅動器等設備運行前的功能測試,確認系統的主要硬件是否可以正常工作。
(2) 故障信息提示當機床運行中發生故障時,在CRT顯示器上會顯示編號和內容。根據提示,查閱有關維修手冊,確認引起故障的原因及排除方法。一般來說,數控機床診斷功能提示的故障信息越豐富,越能給故障診斷帶來方便。但要注意的是,有些故障根據故障內容提示和查閱手冊可直接確認故障原因;而有些故障的真正原因與故障內容提示不相符,或一個故障顯示有多個故障原因,這就要求維修人員必須找出它們之間的內在聯繫,間接地確認故障原因。
數據和狀態檢查
CNC系統的自診斷不但能在CRT顯示器上顯示故障報警信息,而且能以多頁的"診斷地址"和"診斷數據"的形式提供機床參數和狀態信息,常見的數據和狀態檢查有參數檢查和接口檢查兩種。
(1) 參數檢查數控機床的機床數據是經過一系列試驗和調整而獲得的重要參數,是機床正常運行的保證。這些數據包括增益、加速度、輪廓監控允差、反向間隙補償值和絲槓螺距補償值等。當受到外部干擾時,會使數據丟失或發生混亂,機床不能正常工作。
(2) 接口檢查CNC系統與機床之間的輸入/輸出接口信號包括CNC系統與PLC、PLC與機床之間接口輸入/輸出信號。數控系統的輸入/輸出接口診斷能將所有開關量信號的狀態顯示在CRT顯示器上,用"1"或"0"表示信號的有無,利用狀態顯示可以檢查CNC系統是否已將信號輸出到機床側,機床側的開關量等信號是否已輸入到CNC系統,從而可將故障定位在機床側或是在CNC系統。
報警指示燈顯示故障
現代數控機床的CNC系統內部,除了上述的自診斷功能和狀態顯示等"軟件"報警外,還有許多"硬件"報警指示燈,它們分布在電源、伺服驅動和輸入/輸出等裝置上,根據這些報警燈的指示可判斷故障的原因。
備板置換法
利用備用的電路板來替換有故障疑點的模板,是一種快速而簡便的判斷故障原因的方法,常用於CNC系統的功能模塊,如CRT模塊、存儲器模塊等。需要注意的是,備板置換前,應檢查有關電路,以免由於短路而造成好板損壞,同時,還應檢查試驗板上的選擇開關和跨接線是否與原模板一致,有些模板還要注意模板上電位器的調整。置換存儲器板後,應根據系統的要求,對存儲器進行初始化操作,否則系統仍不能正常工作。
交換法
在數控機床中,常有功能相同的模塊或單元,將相同模塊或單元互相交換,觀察故障轉移的情況,就能快速確定故障的部位。這種方法常用於伺服進給驅動裝置的故障檢查,也可用於CNC系統內相同模塊的互換。
敲擊法
CNC系統由各種電路板組成,每塊電路板上會有很多焊點,任何虛焊或接觸不良都可能出現故障。用絕緣物輕輕敲打有故障疑點的電路板、接插件或電器元件時,若故障出現,則故障很可能就在敲擊的部位。
測量比較法
為檢測方便,模塊或單元上設有檢測端子,利用萬用表、示波器等儀器儀表,通過這些端子檢測到的電平或波形,將正常值與故障時的值相比較,可以分析出故障的原因及故障的所在位置。由於數控機床具有綜合性和複雜性的特點,引起故障的因素是多方面的。上述故障診斷方法有時要幾種同時應用,對故障進行綜合分析,快速診斷出故障的部位,從而排除故障。同時,有些故障現象是電氣方面的,但引起的原因是機械方面的;反之,也可能故障現象是機械方面的,但引起的原因是電氣方面的;或者二者兼而有之。因此,對它的故障診斷往往不能單純地歸因於電氣方面或機械方面,而必須加以綜合,全方位地進行考慮。
視頻
普通車床簡介
數控機床的精細加工,實拍視頻
參考來源
- ↑ 永川國家高新區 逐夢揚帆再起航人民網,2018-3-12
- ↑ 機床上的刀具是什麼材料做的,為什麼可以實現真正的削鐵如泥?快咨訊,2020-04-30
- ↑ 數控機床進給驅動系統故障診斷與維修快咨訊,2019-11-30