求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

有機太陽能電池查看源代码讨论查看历史

跳转至: 导航搜索
有機太陽能電池
圖片來自xoer

有机太阳能电池是成分全部或部分为有机物太阳能电池[1] ,他们使用了导电聚合物或小分子用于光的吸收和电荷转移。有机物的大量制备、相对价格低廉,柔软等性质使其在光伏应用方面很有前途。通过改变聚合物等分子的长度和官能团可以改变有机分子的能隙,有机物的摩尔消光系数很高,使得少量的有机物就可以吸收大量的光。相对于无机太阳能电池,有机太阳能电池的主要缺点是较低的能量转换效率稳定性差和强度低。

有机太阳能电池的材料

太阳能电池是一个特别的半导体二极管,它可能将可见光能转化为直流电,一些太阳能电池可能转化红外紫外光的能量为直流电。通常用于有机光伏电池的材料都是有大量共轭键的,共轭键是由交替碳碳单键双键组成的,共轭键的电子的简并轨道离域的,形成了离域成键轨道π轨道反键轨道π*。离域π键是最高占据轨道(HOMO),反键轨道π*是最低未占据轨道(LUMO)。HOMO和LUMO的能级差被认为是有机电子材料的带隙,带隙一般在1-4 eV。

当这些材料吸收了一个光子,就形成了激发态,并被局限在一个分子或一条聚合物的链,激发态可以被看作是在静电力作用结合的一个电子和空穴,也就是激发子,简称激子。在光伏电池中,激子在不同物质的异质结形成的有效场中成为自由的电子空穴对,有效场使电子从吸光体(也就是电子给体)的导带降到受体分子的导带上从而破坏了激子,因此电子受体材料的导带边界,也就是它的LUMO必须低于吸光体材料。

工作原理

以有機太陽能電池結構,可區分成單層及雙層(或稱異質接面)太陽能電池。單層主要以陽極,有機材料及陰極所組成。而雙層主要以陽極,可當電子予體有機材料,可當電子受體有機材料及陰極所組成。 有機太陽能電池其發光原理,以電子予體/受體異質接面(electro donor-acceptor heterojunction)元件結構為例,首先予體(donor)接收光,光激發生成電子電洞對(electron-hole pair)或可稱為激子(exciton)。當激子擴散至Donor-Acceptor介面,激子將分解成獨立傳導的電子及電洞。由於donor及acceptor兩者的LUMO、HUMO能階差異的關係,電子會往acceptor材料,而電洞則往donor材料傳遞。接著透過電極,經由外電路,生成電流。

不論是小分子或高分子有機材料,他們都具有共同特性:高共軛系統這些pz軌域非定域化電子混成形成一非定域化π及π*軌域。其中非定域化π軌域為HOMO,而非定域化π*軌域為LUMO。而兩者的能階差,被認為是有機導電材料的能隙,而通常能隙值約為1~4 eV。一般而言,延長有機分子共軛碳鏈長度,可降低能隙值。有機太陽能電池仍然有許多發展空間,例如藉由有機分子設計,研究出更適合的感光層材料,使其能更充分利用到太陽光能中各種光波段的能量;發展出使載子移動率更快的材料,使其電子-電洞對分離的效率能提升;改善元件的光吸收率,使其轉換效率大幅提升。

分类

依有機材料不同特性,有機太陽能電池又可區分為:

  • 染料敏化太陽能電池(dye-sensitized solar cells,DSSC),1991年瑞士聯邦理工學院的M. Graumltzel教授的研究團隊,發明具光敏性質之染料吸附於半導體奈米多孔洞結構之TiO2電極,搭配具有氧化-還原性質(I– / I3-)之電解液,製作出光電轉換效率高達7 %之染料敏化太陽能電池,目前這種電池的光電轉換效率最高已超過 11%,其發展潛力備受矚目。
  • 小分子有機太陽能電池(Molecular Solar Cells)。
  • 高分子有機太陽能電池(polymer solar cells),1981 年時A. Takahashi研究團隊最早將共軛高分子材料使用於製作太陽能電池。目前高分子有機太陽能電池常用的材料為聚 3-己烷基噻吩(poly (3-hexylthiophene), P3HT) 聚合物半導體(p 型材料)、苯基-C61 丁酸甲酯 (phenyl-C61-butyric acid methylester, PCBM)(n 型材料)所組成。其做法是將這兩種有機半導體材料以溶劑溶解後進行混合,而後再塗佈到元件上。均勻混合後的 pn 介面面積能有效提高,增加激子被拆解的機會而提升電池效率。

優缺點

太陽能電池主要目的是將光能轉換成電能。而有機太陽能電池主要係以具有半導體性質之有機材料製作,其優點:

  1. 製造成本低
  2. 化合物結構可設計性
  3. 材料質輕
  4. 加工性能好
  5. 製造大面積的太陽能電池及大量生產
  6. 高吸光係數
  7. 具有可撓曲,半透明等特性。

但目前亦有多項缺點待克服,如功率轉換效率低,載子遷移率低,高電阻,耐久性差等問題。

參考文獻