求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

實數檢視原始碼討論檢視歷史

事實揭露 揭密真相
前往: 導覽搜尋
實數

實數,可以分為有理數無理數兩類,或代數數和超越數兩類,或正實數負實數三類。有理數可以分成整數和分數,而整數可以分為正整數、零和負整數。分數可以分為正分數負分數[1] 無理數可以分為正無理數負無理數。實數集合通常用字母 R 或 R^n 表示。而R^n 表示 n 維實數空間。實數是不可數的。實數是實分析的核心研究對象。在實際運用中,實數經常被近似成一個有限小數(保留小數點後 n 位,n 為正整數,包括整數)。在計算機領域,由於計算機只能存儲有限的小數位數,實數經常用浮點數來表示。在數軸上表示的兩個實數,右邊的數總比左邊的數大。

基本信息

中文名 實數 [2]

分類 有理數和無理數

實數1.jpg

意思 可以用來測量連續的量

拼音 shishu

基本介紹

實數,是有理數和無理數的總稱。數學上,實數定義為與數軸上的點相對應的數。實數可以直觀地看作有限小數與無限小數,它們能把數軸「填滿」。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成複數。

實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是循環的,也可以是非循環的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後 n 位,n 為正整數,包括整數)。在計算機領域,由於計算機只能存儲有限的小數位數,實數經常用浮點數來表示。

[1]相反數(只有符號不同的兩個數,它們的和為零,我們就說其中一個是另一個的相反數,叫做互為相反數) 實數a的相反數是-a,a和-a在數軸上到原點0的距離相等。

[2]絕對值(在數軸上一個數a與原點0的距離) 實數a的絕對值是:|a|

實數2.jpg

①a為正數時,|a|=a(不變),a是它本身;

②a為0時, |a|=0,a也是它本身;

③a為負數時,|a|= -a(為a的絕對值),-a是a的相反數。

(任何數的絕對值都大於或等於0,因為距離沒有負數。)

[3]倒數(兩個實數的乘積是1,則這兩個數互為倒數) 實數a的倒數是:1/a (a≠0)

[4]數軸

定義:規定了原點,正方向和單位長度的直線叫數軸

(1)數軸的三要素:原點、正方向和單位長度。

實數3.jpg

(2)數軸上的點與實數一一對應。

特別規定0的算術平方根是根號0

實數分類

按性質分類是:正數、0、負數;

按定義分類是:有理數、無理數

歷史來源

埃及人早在大約公元前1000年就開始運用分數了。在公元前500年左右,以畢達哥拉斯為首的希臘數學家們意識到了無理數存在的必要性。印度人於公元600年左右發明了負數,據說中國也曾發明負數,但稍晚於印度。

直到17世紀,實數才在歐洲被廣泛接受。18世紀,微積分學在實數的基礎上發展起來。直到1871年,德國數學家康托爾第一次提出了實數的嚴格定義。實數包括有理數和無理數。其中無理數就是無限不循環小數,有理數就包括無限循環小數、有限小數、整數。

實數4.jpg

數學上,實數直觀地定義為和數軸上的點一一對應的數。本來實數僅稱作數,後來引入了虛數概念,原本的數稱作「實數」——意義是「實在的數」。 實數可以分為有理數和無理數兩類,或代數數和超越數兩類,或正數,負數和零三類。

實數集合通常用字母 R 或 R^n 表示。而 R^n 表示 n 維實數空間。實數是不可數的。實數是實分析的核心研究對象。 實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是循環的,也可以是非循環的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點後 n 位,n 為正整數)。在計算機領域,由於計算機只能存儲有限的小數位數,實數經常用浮點數來表示。

相關定義

1.實數由有理數構造

實數可以用通過收斂於一個唯一實數的十進制或二進制展開如 {3, 3.1, 3.14, 3.141, 3.1415,…} 所定義的序列的方式而構造為有理數的補全。實數可以不同方式從有理數構造出來。這裡給出其中一種,其他方法請詳見實數的構造。

2.公理的方法

實數5.png

設 R 是所有實數的集合,則:

集合 R 是一個域: 可以作加、減、乘、除運算,且有如交換律,結合律等常見性質。

域 R 是個有序域,即存在全序關係≥ ,對所有實數 x, y 和 z:

若 x ≥ y 則 x + z ≥ y + z

若 x ≥ 0 且 y ≥ 0 則 xy ≥ 0。

集合 R 滿足完備性,即任意 R 的有空子集S ( S∈R,S≠Φ),若 S 在 R 內有上界,那麼 S 在 R 內有上確界。

最後一條是區分實數和有理數的關鍵。例如所有平方小於 2 的有理數的集合存在有理數上界,如 1.5;但是不存在有理數上確界(因為 √2 不是有理數)。

實數通過上述性質唯一確定。更準確的說,給定任意兩個有序域 R1 和 R2,存在從 R1 到 R2 的唯一的域同構,即代數學上兩者可看作是相同的。

相關性質

實數6.jpg

基本運算

實數可實現的基本運算有加、減、乘、除、乘方等,對非負數(即正數和0)還可以進行開方運算。實數加、減、乘、除(除數不為零)、平方後結果還是實數。任何實數都可以開奇次方,結果仍是實數,只有非負實數,才能開偶次方其結果還是實數。

四則運算封閉性

實數集R對加、減、乘、除(除數不為零)四則運算具有封閉性,即任意兩個實數的和、差、積、商(除數不為零)仍然是實數。

實數集有序性

實數集是有序的,即任意兩個實數a、b必定滿足下列三個關係之一:a<b,a=b,a>b.

實數的傳遞性

實數大小具有傳遞性,即若a>b,b>c,則有a>c.

實數的阿基米德性

實數7.jpg

實數具有阿基米德(Archimedes)性,即對任何a,b ∈R,若b>a>0,則存在正整數n,使得na>b.

實數的稠密性

實數集R具有稠密性,即兩個不相等的實數之間必有另一個實數,既有有理數,也有無理數.

實數唯一性

如果在一條直線(通常為水平直線)上確定O作為原點,指定一個方向為正方向(通常把指向右的方向規定為正方向),並規定一個單位長度,則稱此直線為數軸。任一實數都對應與數軸上的唯一一個點;反之,數軸上的每一個點也都唯一的表示一個實數。於是,實數集R與數軸上的點有着一一對應的關係。

完備性

作為度量空間或一致空間,實數集合是個完備空間,它有以下性質:

所有實數的柯西序列都有一個實數極限。

有理數集合就不是完備空間。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...) 是有理數的柯西序列,但沒有有理數極限。實際上,它有個實數極限 √2。實數是有理數的完備化——這亦是構造實數集合的一種方法。

極限的存在是微積分的基礎。實數的完備性等價於歐幾里德幾何的直線沒有「空隙」。

實數8.jpg

「完備的有序域」

實數集合通常被描述為「完備的有序域」,這可以幾種解釋。

首先,有序域可以是完備格。然而,很容易發現沒有有序域會是完備格。這是由於有序域沒有最大元素(對任意元素 z,z + 1 將更大)。所以,這裡的「完備」不是完備格的意思。

另外,有序域滿足戴德金完備性,這在上述公理中已經定義。上述的唯一性也說明了這裡的「完備」是指戴德金完備性的意思。這個完備性的意思非常接近採用戴德金分割來構造實數的方法,即從(有理數)有序域出發,通過標準的方法建立戴德金完備性。

這兩個完備性的概念都忽略了域的結構。然而,有序群(域是種特殊的群)可以定義一致空間,而一致空間又有完備空間的概念。上述完備性中所述的只是一個特例。(這裡採用一致空間中的完備性概念,而不是相關的人們熟知的度量空間的完備性,這是由於度量空間的定義依賴於實數的性質。)當然,R 並不是唯一的一致完備的有序域,但它是唯一的一致完備的阿基米德域。

實際上,「完備的阿基米德域」比「完備的有序域」更常見。可以證明,任意一致完備的阿基米德域必然是戴德金完備的(當然反之亦然)。這個完備性的意思非常接近採用柯西序列來構造實數的方法,即從(有理數)阿基米德域出發,通過標準的方法建立一致完備性。

「完備的阿基米德域」最早是由希爾伯特提出來的,他還想表達一些不同於上述的意思。他認為,實數構成了最大的阿基米德域,即所有其他的阿基米德域都是 R 的子域。這樣 R 是「完備的」是指,在其中加入任何元素都將使它不再是阿基米德域。這個完備性的意思非常接近用超實數來構造實數的方法,即從某個包含所有(超實數)有序域的純類出發,從其子域中找出最大的阿基米德域。

實數9.jpg

高級性質

實數集是不可數的,也就是說,實數的個數嚴格多於自然數的個數(儘管兩者都是無窮大)。這一點,可以通過康托爾對角線方法證明。實際上,實數集的勢為 2ω(請參見連續統的勢),即自然數集的冪集的勢。

由於實數集中只有可數集個數的元素可能是代數數,絕大多數實數是超越數。實數集的子集中,不存在其勢嚴格大於自然數集的勢且嚴格小於實數集的勢的集合,這就是連續統假設。該假設不能被證明是否正確,這是因為它和集合論的公理不相關。

所有非負實數的平方根屬於 R,但這對負數不成立。這表明 R 上的序是由其代數結構確定的。而且,所有奇數次多項式至少有一個根屬於 R。這兩個性質使 R成為實封閉域的最主要的實例。證明這一點就是對代數基本定理的證明的前半部分。

實數集擁有一個規範的測度,即勒貝格測度。

實數集的上確界公理用到了實數集的子集,這是一種二階邏輯的陳述。不可能只採用一階邏輯來刻畫實數集:1. Löwenheim-Skolem定理說明,存在一個實數集的可數稠密子集,它在一階邏輯中正好滿足和實數集自身完全相同的命題;

實數0.png

2. 超實數的集合遠遠大於 R,但也同樣滿足和 R 一樣的一階邏輯命題。滿足和 R 一樣的一階邏輯命題的有序域稱為 R 的非標準模型。這就是非標準分析的研究內容,在非標準模型中證明一階邏輯命題(可能比在 R 中證明要簡單一些),從而確定這些命題在 R 中也成立。

拓撲性質

實數集構成一個度量空間:x 和 y 間的距離定為絕對值 |x - y|。作為一個全序集,它也具有序拓撲。這裡,從度量和序關係得到的拓撲相同。實數集又是 1 維的可縮空間(所以也是連通空間)、局部緊緻空間、可分空間、貝利空間。但實數集不是緊緻空間。這些可以通過特定的性質來確定,例如,無限連續可分的序拓撲必須和實數集同胚。以下是實數的拓撲性質總覽:

令 a 為一實數。a 的鄰域是實數集中一個包括一段含有 a 的線段的子集。

R 是可分空間。

Q 在 R 中處處稠密。

R的開集是開區間的聯集。

R的緊子集是有界閉集。特別是:所有含端點的有限線段都是緊子集。

每個R中的有界序列都有收斂子序列。

實數00.jpg

R是連通且單連通的。

R中的連通子集是線段、射線與R本身。由此性質可迅速導出中間值定理。

相關介紹

擴展與一般化

實數集可以在幾種不同的方面進行擴展和一般化:

最自然的擴展可能就是複數了。複數集包含了所有多項式的根。但是,複數集不是一個有序域。

實數集擴展的有序域是超實數的集合,包含無窮小和無窮大。它不是一個阿基米德域。

T01fc07a9e587a8962e.jpg

有時候,形式元素 +∞ 和 -∞ 加入實數集,構成擴展的實數軸。它是一個緊緻空間,而不是一個域,但它保留了許多實數的性質。

希爾伯特空間的自伴隨算子在許多方面一般化實數集:它們是有序的(儘管不一定全序)、完備的;它們所有的特徵值都是實數;它們構成一個實結合代數。​

數學名詞

八邊形 八面體 百分比 百分點 百分位數 半徑 半球 半圓 被乘數 被除數 被加數 被減數 比 比例 邊 變量 標準差 表面積 並集 補集 不等邊三角形 不等式 不定積分 差 長 常量 乘 乘方 乘數 除 除數 垂心 次方 次方根 大於 大於等於 代數 單調性 單項式 導數 等邊三角形 等式方程式 等腰三角形 等腰梯形 等於 底 底面 點 定積分 定理 定義域 對數 鈍角 鈍角三角形 多邊形 多面體 二次方程 多項式 二次方根平方根 二次方平方 二進制 二十面體 反餘割 反餘切 反餘弦 反正割 反正切 反正弦 方差 非正態分布 分布 分母 分數 分子 負 複數

131544 50af06805f948.jpg

高 公理 公式 勾股定理 軌跡 函數 和 橫坐標 弧 弧度 環 積 積分 極限 集合 幾何 計算 加 加權平均數 加數 假設 減 減數 交集 角 角度 階乘 截尾 進位 九邊形 九面體 矩形 矩陣 開方 空集 空間 寬 稜台 稜柱 稜錐 立方體 菱形 零 六邊形 六面體 面 面積 命題 內切圓 內心 排列 旁心 拋物線 平角 平均數 平行 平行六面體 平行四邊形 七邊形 七面體 奇偶性 球 曲線統計圖 全等 權 銳角 銳角三角形 三次方程 三次方根立方根 三次方立方 三角 三角形 扇形 扇形統計圖 商 上捨入 射線 十邊形 十二邊形 十二面體 十進制 十六進制 十面體 十一邊形 十一面體 實數 數 數列級數 數字 雙曲線 四邊形 四次方 四次方程 四次方根 四面體 四捨五入 算術 梯形 體 體積 條形統計圖 統計 圖表 圖象 橢圓 外切圓 外心 微分 微積分 未知數 無理數 無窮大 無窮小 無效數字 五邊形 五面體 係數 下捨入 線 線段 相交 相似 相位 小數 小數點 小於 小於等於 斜邊 行列式 虛數 旋轉 一次方程 映射 有理數 有效數字 餘割 餘切 餘弦 元素 原點 圓 圓台 圓心 圓周 圓周率 圓柱 圓錐 運算 運算符 折線統計圖 振幅 整數 正 正多邊形 正方形 正割 正切 正態分布 正弦 證明 直角 直角邊 直角三角形 直角梯形 直徑 值域 指數冪 重心 周長 周角 周期 周期性 軸 柱形統計圖 子集 自然數 縱坐標 組合 坐標系 坐標軸

參考來源