求真百科歡迎當事人提供第一手真實資料,洗刷冤屈,終結網路霸凌。

电气化铁路查看源代码讨论查看历史

跳转至: 导航搜索

电气化铁路,亦称电化铁路,是由电力机车电联车这两种铁路列车(即通称的火车)为主,所行驶的铁路。

可以用以下方法来对电气化铁路进行分类:电力来源:轨道供电接触网、超级电容[1];供电类型:直流供电交流供电

基本概念

简介

电气化铁路(electric railway)

电气化铁路的牵引动力是电力机车,机车本身不带能源,所需能源由电力牵引供电系统提供。电气化铁路,亦称电化铁路,是由电力机车或动车组这两种铁路列车(即通称的火车)为主,所行走的铁路。

组成

牵引供电系统主要是指牵引变电所和接触网两大部分。

变电所设在铁道附近,它将从发电厂经高压输电线送来的电能,送到铁路上空的接触网上。

接触网是向电力机车直接输送电能的设备。沿着铁路线的两旁,架设着一排支柱,上面悬挂着金属线,即为接触网,它也可以被看作是电气化铁路的动脉。

电力机车利用车顶的受电弓从接触网获得电能,牵引列车运行。牵引供电制式按接触网的电流制有直流制和交流制两种。

直流制是将高压、三相电力在牵引变电所降压和整流后,向接触网供直流电,这是发展最早的一种电流制,到20世纪50年代以后已较少使用。交流制是将高压、三相电力在变电所降压和变成单相后,向接触网供交流电。

交流制供电电压较高,发展很快。我国电气化铁路的牵引供电制式从一开始就采用单相工频(50赫)25千伏交流制,这一选择有利于今后电气化铁路的发展[2]

和传统的蒸汽机车柴油机车牵引列车运行的铁路不同,电气化铁路是指从外部电源和牵引供电系统获得电能,通过电力机车牵引列车运行的铁路。它包括电力机车、机务设施、牵引供电系统、各种电力装置以及相应的铁路通信信号等设备。

电气化铁路具有运输能力大、行驶速度快、消耗能源少、运营成本低、工作条件好等优点,对运量大的干线铁路和具有陡坡、长大隧道的山区干线铁路实现电气化,在技术上、经济上均有明显的优越性。

分类

可以用以下方法来对电气化铁路进行分类:

供电导线类型:第三轨、高架电缆

供电类型:直流供电、交流供电

供电方式

轨道供电

采用轨道供电的电气化铁路通常铺设有额外的供电轨道,用来连接电网和机车,为机车提供电力供应,亦被称为第三轨供电,这条轨道被称为第三轨[3]

高架电缆

高架电缆连接在电气化铁路的供电电网上,分为柔性和刚性两类,电力机车或动车组通过架式集电弓连接接触网,从其中取电。

架空电缆和高架电缆是香港台湾的说法,在中国大陆通常被称为接触网供电。在中国大陆,架空电缆和高架电缆一般是指高压输电线路。

两种导线类型,最终都通过列车正常的运行轨道接地形成回路。也有少数铁路使用第四轨(例如伦敦地铁)作为电流回路。

高架电缆有个好处,就是同时能当高压输电道,如日本京急线。

直流

早期的电气化铁路采用电压相对低的直流供电。机车或动车组的电动机直接连接在电网主线上,通过并联或串联在电动机上的电阻和继电器来进行控制。

通常有轨电车地铁的电压是600伏和750伏,铁路使用1500伏和3000伏。过去车辆使用旋转变流器来将交流电转换为直流电。一般使用半导体整流器完成这个工作。

采用直流供电的系统比较简单,但是它需要较粗的导线,车站之间距离也较短,并且直流线路有显著的电阻损失。

荷兰日本澳大利亚印尼马来西亚的一些地区、法国的少数地区使用1500V的直流电,其中,荷兰实际使用的电压大 约有1600V到1700V。

比利时意大利波兰捷克北部、斯洛伐克前南斯拉夫、前苏联使用3000V直流电。

低频交流电

一些欧洲国家使用低频交流电来给电力机车供电。德国奥地利瑞士挪威瑞典使用15千伏16.67赫兹(电网频率50Hz的三分之一)的交流电。美国使用11千伏或12.5千伏25赫兹的交流电。机车的电机通过可调变压器来控制。

工频交流电

匈牙利曾经在二十世纪三十年代在电气化铁路上使用50赫兹的交流电。然而直到五十年代以后才被广泛使用。

一些电气化机车使用变压器和整流器来提供低压脉动直流电给电动机使用,通过调节变压器来控制电动机速度。另一些则使用可控硅或场效应管来产生突变交流或变频交流电来供应给机车的交流电机。

这样的供电形式比较经济,但是也存在缺点:外部电力系统的相位负荷不等,而且还会产生显著的电磁干扰。

中国、法国、英国、芬兰丹麦、前苏联、前南斯拉夫、西班牙(标准轨高铁路段)、日本(东北、上越、北海道新干线及北陆新干线轻井泽以东)、使用单相25千伏50赫兹电力供应,台湾高速铁路、台湾铁路管理局、韩国、日本(东海道、山阳、九州新干线及北陆新干线轻井泽以西)使用单相25千伏60赫兹电力供应,而美国通常使用单相12.5千伏和25千伏60赫兹的交流电。另外日本东北、北海道地区使用20千伏50赫兹交流电,北陆地区、九州地区使用20千伏60赫兹交流电。

多种系统供电

因为有这么多的供电方式,有时候甚至一个国家内采用不同的方式(如日本关东以南是60Hz,但东北及北陆以北是50Hz),所以列车经常必须从一种供电方式转向为另一种供电方式。其中一种方法是在换乘站更换机车,当然,这样很不方便。另一种方法是使用支持多种供电系统的机车。

欧洲,通常是支持四种供电系统(直流1.5千伏、直流3千伏、交流15千伏16.67赫兹、交流25千伏50赫兹)的机车,这样,它在从一个供电系统到另一个的时候就可以不用停留[4]

历史

直流供电时期

1879年5月柏林贸易展览会上展示了第一条电气化铁道。这是一条长约300m的椭圆形铁路,轨距1m,由150V的外部直流电源经第三轨供电,以两条轨作为轨道回路;电力机车只有945kg,这条电气化铁路虽然很短,却奠定了电气化铁道的基础。 1881年在德国西门子公司利希特非尔德——军事学院修建了一条2.45km的电气化铁路,同年,在法国伦敦出现第一条架空导线供电的500m长的有轨电车线路,并于1885年正式投入商业运行中。

交流供电时期

1903年,匈牙利出现了由架空的三根导线供电的三相交流电力机车,但很快就停止了,主要是维修太困难了。

1932年,匈牙利首先成功地在电气化铁道上采有16kV工频单相交流电。

1950年,法国通过研究论证,修建了25KV单相工频实验线,并于1953年把单相交流电25KV80Hz电流制用于东南线,收到了良好的经济效益。

优点

电气化铁路是一种现代化的铁路运输工具,和使用的内燃、蒸汽机车牵引的铁路相比,具有技术经济上的优越性。

能大幅度提高运输能力

由于电力机车以外部电能作动力,它不需要自带动力装置,可降低机车自重,这样,在每根轴的荷重相同的条件下,其轴功率较大,目前国内的电力机车最大为900千瓦,内燃机车为500千瓦,在相同的牵引重量时,其速度较高。而在相同速度下,其牵引力较大。客运用的SS8型电力机车持续速度为100公里/时,而DFll型内燃机车只有65.5公里/时。从货运机车的功率来比较,SS4型电力机车为6400千瓦,DFl0型内燃机车为3245千瓦,而前进型蒸汽机车仅为2200千瓦。由上述数字可以看出,因为电力机车的功率大,所以它的牵引力大和持续速度较高,从而大大提高了运输能力。

节约能源,降低运输成本

节约能源,降低运输成本原图链接来自环球网 的图片

铁路运输是国家能源消耗的一个大户。因此,牵引动力类型的选择对于合理使用能源具有重要意义。

电力牵引的动力是电能,从我国能源生产的发展来看,“八五”期间发电量增长32%,原煤增长13%,原油增长5.1%;1995年电力牵引用电量仅占全国发电量的0.64%;再以宏观的能源结构看,原油储量远少于煤炭、水力,而一些无法直接使用电能的水上、陆地和空中运输工具及移动机械却需要大量的液体燃料,因此,电力牵引是最合理的牵引动力。电力牵引每万吨公里的能耗比其它牵引约低1/3,根据1990年全路运输业务决算报告,以每万吨公里机务成本计算,电力机车为100%,则内燃机车为136.9%,蒸汽机车为135.1%。

有利于保护环境,并能增加安全可靠程度

电力机车无废气、烟尘,对空气无污染,另外噪音较小,特别在通过长大隧道时,其优点更为显著,这不仅改善了司机的工作条件和旅客的舒适度,而且对铁路沿线城市、郊区的污染也减到最小程度。电力机车装有大功率的电气制动装置,可用于长大下坡的速度调整,从而可以大大提高列车运行的安全度。

动力

电气化铁路使用电力机车作为牵引动力,机车上不安装原动机,所需电能由电气化铁路电力牵引供电系统提供。中国电气化铁路的牵引供电制式从一开始就采用单相工频(50赫)25千伏交流制,这一选择有利于今后电气化铁路的发展。

模拟平台

电气化铁路动态物理模拟(physics simulation of transient system of electric railway)反映供电系统和电力牵引全过程及相互关系的动态物理模拟系统,用以获取和优化电气化铁路运行的各主要技术参数。区分为直流和交流电气化铁路动态物理模拟两种类型。

直流电气化铁路动态模拟计算台直流电气化铁路动态模拟计算台由前苏联莫斯科铁道学院于1950年开始研制。

计算台各环节简介

利用相似标准,按与实际相符的一定比例模拟变电所电压、内阻,接触网和钢轨的电阻、电流,机车的F1,I1,研制了包括5个变电所,125km长的接触网、钢轨和线路及电力机车组成的模拟台,其原理结构图见图2。①供电系统:牵引变电所由交流供电经桥式整流及内阻后向4条馈线供电;接触网和钢轨用10个步进选择器组成,其中每层有25条支路,共计250条,每条代表0.5km,其第一层每条支路的电阻模拟10mm2~738mm2的等值铜导线截面,第二层模拟P45和P60型钢轨。②线路纵断面:利用一系列的串、并联电阻形成—电位器,其上不同的正、负电压相似地模拟不同的上、下坡道阻力,使每个0.5km具有不同的坡道。③电力机车牵引列车:机车的主回路由图2中机车电阻和电流来模拟,取电压UkM,形成电流为(M代表模拟值)。

中国发展

从1958年第一条电气化铁路开始修建,到2012年12月1日哈大高铁正式开通,中国电气化铁路总里程在54年突破4.8万公里,超越了原电气化铁路世界第一的俄罗斯,跃升为世界第一位

首次建成

1961年8月15日建成我国第一条电气化铁路——宝成铁路宝(鸡)凤(州)段。这条电气化铁路的供电制式最初是按3000直流制设计的。后来了解到法国、前苏联日本已成功采用了新的电流制——工频单牙交流制,经过专家教授们反复论证对比,于1975年4月决定改用25KV工频单相交流制,这种供电制式的确定,避免了我国电气化铁路发展中的弯路,为我国电气化铁路的发展打下了良好的技术基础。

1958年3月完成初步设计,同年6月15日开始动工兴建,经过建设者们两年的艰苦创业,奋力拼搏,我国第一条电气化铁路于1960年5月14日胜利建成,经过一年多的试运行,于1961年正式交付运营,从此揭开了我国电气化铁路建设的序幕。

建设

20世纪60年代中期,为了加速大西南的建设,沟通西南地区与全国的物资交流,宝成铁路凤州至成都段的电气化铁路上马。

1966年3月提出电气化研究报告,同年12月完成初步设计,1968年12月广元马角坝段电气化工程开工。电气化工程是分段进行的,先修建广元至绵阳段,后修建广元至凤州段,最后修建绵阳成都段。经过7年的艰苦奋战,于1975年7月1日,676Km和的宝成电气化铁路全线建成通车。

1973年9月阳安线、1975年9月襄渝线襄樊安康段、1978年3月石太线石家庄至阳泉段、1979年10月宝兰线宝鸡至天水段相继动工修建。到1980年底,共建成电气化铁路1679.6Km。

1985年一年内就有京秦线、成渝线内(江)重(庆)段、贵昆线贵(阳南)水(城西)段和太焦线长(治北)月(山)段4条电气化铁路共计1169.23Km交付运营。

20世纪90年代有10条线共计2795.76Km电气化铁路建成交付运营。

2008年8月1日京津高速电气化铁路开通运营。

2009年4月1日合武高速电气化铁路开通运营。

2009年12月26日武广高速电气化铁路开通运营。2010年2月6日郑西高速电气化铁路开通运营[5]。我国电气化铁路进入了高速电气化时代。

世界铁路电气化概况

世界上68个国家和地区拥有电气化铁路。2012年12月1日哈大高铁正式开通,中国大陆电气化铁路总里程突破4.8万公里,超越了俄罗斯,跃升为世界第一位。俄罗斯43300公里、德国21013公里、印度18810公里、日本16965公里、法国15217公里。

台湾

电气化路线

台北捷运各路线

桃园机场捷运全线

高雄捷运各路线

台湾高铁全线

台铁纵贯线、宜兰线、北回线、六家线、沙仑线、台东线全线、内湾线新竹站至竹中站、屏东线高雄站至潮州站及南回线台东站至知本站。

意义

电力机车动车本身不带原动机和燃料,比功率(单位重量功率)大,与内燃机车和内燃动车相比,在相同或相近的持续牵引力(以单轴计)下持续速度高一倍以上,牵引相同重量的列车可以实现更高的额定最高速度(或称最高运营速度),而且恒功速度范围宽,电制动功率也大,所以起、制动和加、减速性能也均较优越。

电力牵引这种快跑、多拉的特性能更充分地满足铁路运输对提高行车速度、增加列车重量和加大行车密度的综合要求,从而更加有利于:大幅度提高旅客运输旅行速度高附加值商品运输的送达速度;组织煤炭、建材、粮食等大宗货物的高效、快捷的重载直达运输;发挥速度优势,不断推出运输新产品,拓广铁路运输的营销范围,增强其在运输市场上的竞争实力。

特别轨道交通与高速公路航空运输协调发展的“运输走廊”,吸引大中城市间和市郊运输的大量客流转乘高速和快速电气列车,可以明显改善人们的旅行条件、缓解交通堵塞、减少大气污染、节省石油土地等有限资源。这种超越上述企业效益的重大国民经济效益和社会效益,在唤醒发达国家的政府和社会对铁路公益性的再认识,为铁路发展获取资金和支持方面,起了重要的作用。

视频

中国中铁电气化局集团有限公司电气化公司宣传片
中国全线电气化铁路,二十年间建设发生翻天覆地的改变
国家能源集团神华铁路货车公司宣传片

参考文献